【題目】如圖,在中,,,作斜邊AB上中線CD,得到第1個(gè)三角形ACD;于點(diǎn)E,作斜邊DB上中線EF,得到第2個(gè)三角形DEF;依次作下去則第1個(gè)三角形的面積等于______,第n個(gè)三角形的面積等于______

【答案】

【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,然后判定出是等邊三角形,同理可得被分成的第二個(gè)、第三個(gè)n個(gè)三角形都是等邊三角形,再根據(jù)后一個(gè)等邊三角形的邊長(zhǎng)是前一個(gè)等邊三角形的邊長(zhǎng)的一半求出第n個(gè)三角形的邊長(zhǎng),然后根據(jù)等邊三角形的面積公式求解即可.

解:CD是斜邊AB上的中線,

,

,

是等邊三角形,

同理可得,被分成的第二個(gè)、第三個(gè)n個(gè)三角形都是等邊三角形,

AB的中線,EFDB的中線,,

第一個(gè)等邊三角形的邊長(zhǎng),

第一個(gè)三角形的面積為,

第二個(gè)等邊三角形的邊長(zhǎng),

n個(gè)等邊三角形的邊長(zhǎng)為,

所以,第n個(gè)三角形的面積

故答案為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法合理的是( 。

A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是

B. 某彩票的中獎(jiǎng)概率是5%,那么買100張彩票一定有5張中獎(jiǎng)

C. 某射擊運(yùn)動(dòng)員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點(diǎn),連接MN.AB=7,BE=5,則MN=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定到超市購(gòu)買一定數(shù)量的羽毛球拍和羽毛球,已知買1副羽毛球拍和1個(gè)羽毛球要花費(fèi)35元,買2副羽毛球拍和3個(gè)羽毛球要花費(fèi)75元,求購(gòu)買10副羽毛球拍和20個(gè)羽毛球共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC上的中線,點(diǎn)E在線段AC上且EC=2AE,線段AD與線段BE交于點(diǎn)F,若ABC對(duì)面積為3,則四邊形EFDC的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F分別在AB,AD上,若CE3,且∠ECF45°,則CF的長(zhǎng)為

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.

1)求邊的長(zhǎng);

2)當(dāng)為直角三角形時(shí),求的值;

3)當(dāng)為軸對(duì)稱圖形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

我們知道,二元一次方程有無數(shù)個(gè)解.在平面直角坐標(biāo)系中,我們標(biāo)出以這個(gè)方程的解為坐標(biāo)的點(diǎn),就會(huì)發(fā)現(xiàn)這些點(diǎn)在同一條直線上.例如:,方程xy=﹣1的一個(gè)解,對(duì)應(yīng)點(diǎn)為(12).

我們?cè)谄矫嬷苯亲鴺?biāo)系中標(biāo)出,另外方程xy=﹣1的解還對(duì)應(yīng)點(diǎn)(2,3),(3,4將這些點(diǎn)連起來正是一條直線,反過來,在這條直線上任取一點(diǎn),這個(gè)點(diǎn)的坐標(biāo)也是方程x1=﹣1的解,所以,我們就把這條直線叫做方程xy=﹣1的圖象.

一般的,任意二元一次方程解的對(duì)應(yīng)點(diǎn)連成的直線就叫這個(gè)方程的圖象.那么每個(gè)二元一次方程組應(yīng)該對(duì)應(yīng)兩條直線,解這個(gè)方程組,相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo).

1)已知A1,1),B(﹣3,4),C(,2),則點(diǎn)   (填A、B、C)在方程2xy=﹣1的圖象上;

2)求方程2x+3y9和方程3x4y5圖象的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案