【題目】在平面直角坐標(biāo)系中,將拋物線向右平移4個單位長度,平移后的拋物線與y軸的交點為A0,3),則平移后的拋物線的對稱軸為(

A.x=-1B.x=1C.x=-2D.x=2

【答案】D

【解析】

根據(jù)平移規(guī)則寫出平移后得解析式,將點A得坐標(biāo)代入解析式,求得二次函數(shù)解析式,然后再求對稱軸..

解: 將拋物線向右平移個單位長度后所得拋物線的解析式為y=(x-4)2-(a-2)(x-4)+a2-1,

在y=(x-4)2-(a-2)(x-4)+a2-1中,當(dāng)時,y=a2+4a+7.,

拋物線 y=(x-4)2-(a-2)(x-4)+a2-1與y軸的交點為(0, a2+4a+7),

平移后的拋物線與y軸的交點為A(0,3),

∴a2+4a+7=3,

解得a1=a2=-2.

平移后的拋物線的解析式為y=x2-4x+3.

平移后的拋物線的對稱軸為直線x=2

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+4x軸交于點A(﹣20)和B4,0)、與y軸交于點C.點M,Q分別從點AB以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行.當(dāng)點M到達原點時,點Q立刻掉頭并以每秒個單位長度的速度向點B方向移動,當(dāng)點M到達拋物線的對稱軸時,兩點停止運動.過點M的直線lx軸,交ACBC于點P.當(dāng)t_____時,APQ的面積S有最大值,為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價;

(2)該款外套9月份投放市場的批發(fā)價為150/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.

①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)

②進入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎(chǔ)上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎(chǔ)上實施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x6的對稱軸是x2

1)求拋物線表達式和頂點坐標(biāo);

2)將該拋物線向右平移1個單位,平移后的拋物線與原拋物線相交于點A,求點A的坐標(biāo);

3)拋物線y=﹣2x2+(m+9)x6y軸交于點C,點A關(guān)于平移后拋物線的對稱軸的對稱點為點B,兩條拋物線在點A、C和點A、B之間的部分(包含點A、B、C)記為圖象M.將直線y2x2向下平移bb0)個單位,在平移過程中直線與圖象M始終有兩個公共點,請你寫出b的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于CD兩點,與xy軸交于B,A兩點,且tanABO=,OB=4OE=2

1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;

2)求OCD的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+ca≠0)與y軸交于點A,與x軸交于BC兩點(點Cx軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點C時,與x軸的另一交點為E,其頂點為F

1)求a、c的值;

2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是邊長為的正方形,矩形AEFG中AE=4,∠AFE=30°。將矩形AEFG繞點A順時針旋轉(zhuǎn)15°得到矩形AMNH(如圖2),此時BD與MN相交于點O.

(1)求∠DOM的度數(shù);

(2)圖2中,求D、N兩點間的距離;

(3)若將矩形AMNH繞點A再順時針旋轉(zhuǎn)15°得到矩形APQR,此時點B在矩形APQR的內(nèi)部、外部還是邊上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①,②,③,④,其中正確結(jié)論的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點EF、GH分別在AB、BC、CD、AD邊上且AE=CGAH=CF

1)求證:四邊形EFGH是平行四邊形;

2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.

查看答案和解析>>

同步練習(xí)冊答案