【題目】如圖,某工程隊從A點出發(fā),沿北偏西67度方向修一條公路AD,在BD路段出現(xiàn)塌陷區(qū),就改變方向,由B點沿北偏東23度的方向繼續(xù)修建BC段,到達C點又改變方向,使所修路段CE∥AB,此時∠ECB有多少度?試說明理由.

【答案】解:∠ECB=90°.
理由:∵∠1=67°,
∴∠2=67°.
∵∠3=23°,
∴∠CBA=180°﹣67°﹣23°=90°.
∵CE∥AB,
∴∠ECB=∠CBA=90°.

【解析】先根據平行線的性質求出∠2的度數(shù),再由平角的定義求出○CBA的度數(shù),根據CE∥AB即可得出結論.
【考點精析】利用平行線的性質對題目進行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】交通安全是社會關注的熱點問題,安全隱患主要是超速和超載.某中學八年級數(shù)學活動小組的同學進行了測試汽車速度的實驗.如圖,先在筆直的公路1旁選取一點P,在公路1上確定點O、B,使得PO⊥l,PO=100米,∠PBO=45°.這時,一輛轎車在公路1上由B向A勻速駛來,測得此車從B處行駛到A處所用的時間為3秒,并測得∠APO=60°.此路段限速每小時80千米,試判斷此車是否超速?請說明理由(參考數(shù)據: =1.41, =1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求代數(shù)式 的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足為F,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2012四川雅安)在平面直角坐標系中,三角形ABC的三個頂點坐標分別是A(4,5),B(1,2),C(4,2),將三角形ABC向左平移5個單位后,A點的對應點A′的坐標是( )

A.(0,5)

B.(-1,5)

C.(9,5)

D.(-1,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個兩位數(shù),個位數(shù)字是 2,若十位上的數(shù)字為 a,則這個兩位數(shù)可表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校開展捐書活動,以下是5名同學捐書的冊數(shù):49,5x,3,已知這組數(shù)據的平均數(shù)是5,則這組數(shù)據的中位數(shù)和眾數(shù)分別是(

A. 33 B. 44 C. 34 D. 55

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫下列解題過程中的推理根據:
已知:如圖,點F、E分別在AB、CD上,AE、DF分別與BC相交于H、G,∠A=∠D,∠1+∠2=180°.說明:AB∥CD

解:∵∠1=∠CGD(
∠1+∠2=180°
.
∴AE//FD (
(兩直線平行,同位角相等)
又∠A=∠D
∴∠D=∠BFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

(1)探究一:三角形的一個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數(shù)量關系,并說明理由.
(2)探究二:四邊形的兩個個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,
試探究∠P與∠A+∠B的數(shù)量關系,并說明理由.
(3)探究三:六邊形的四個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系:

查看答案和解析>>

同步練習冊答案