【題目】(10分)如圖,在△ABC中,AB=AC,D為BC上一點(diǎn),∠B=30°,連接AD.
(1)若∠BAD=45°,求證:△ACD為等腰三角形;
(2)若△ACD為直角三角形,求∠BAD的度數(shù).
【答案】(1)見解析 (2) ∠BAD=60°或∠BAD=30°
【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)求出∠B=∠C=30°,根據(jù)三角形內(nèi)角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根據(jù)等腰三角形的判定得出即可;
(2)有兩種情況:①當(dāng)∠ADC=90°時,當(dāng)∠CAD=90°時,求出即可.
(1)證明:∵AB=AC,∠B=30°,
∴∠B=∠C=30°,
∴∠BAC=180°﹣30°﹣30°=120°,
∵∠BAD=45°,
∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,
∴∠ADC=∠CAD,
∴AC=CD,
即△ACD為等腰三角形;
(2)解:有兩種情況:①當(dāng)∠ADC=90°時,
∵∠B=30°,
∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;
②當(dāng)∠CAD=90°時,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;
即∠BAD的度數(shù)是60°或30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10.分組后頻數(shù)為4的一組為( )
A. 5.5~7.5 B. 7.5~9.5 C. 9.5~11.5 D. 11.5~13.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)探究與發(fā)現(xiàn):如圖①,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在底邊BC上,AE=AD,連結(jié)DE.
(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);
(2)當(dāng)點(diǎn)D在BC (點(diǎn)B、C除外) 上運(yùn)動時,試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;
(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是________.(填序號)
①3個人分成兩組,一定有2人分在一組;
②隨意擲兩個完好的骰子,朝上一面的點(diǎn)數(shù)之和不小于2;
③明天北京會刮大風(fēng),出現(xiàn)沙塵暴;
④你百米可跑5秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠甲、乙兩個車間同時開始生產(chǎn)某種產(chǎn)品,產(chǎn)品總?cè)蝿?wù)量為m件,開始甲、乙兩個車間工作效率相同.乙車間在生產(chǎn)一段時間后,停止生產(chǎn),更換新設(shè)備,之后工作效率提高.甲車間始終按原工作效率生產(chǎn).甲、乙兩車間生產(chǎn)的產(chǎn)品總件數(shù)y與甲的生產(chǎn)時間x(時)的函數(shù)圖象如圖所示.
(1)甲車間每小時生產(chǎn)產(chǎn)品 件,a= .
(2)求乙車間更換新設(shè)備之后y與x之間的函數(shù)關(guān)系式,并求m的值.
(3)若乙車間在開始更換新設(shè)備時,增加兩名工作人員,這樣可便更換設(shè)備時間減少0.5小時,并且更換后工作效率提高到原來的2倍,那么兩個車間完成原任務(wù)量需幾小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com