【題目】(10分)如圖,在△ABC中,AB=AC,DBC上一點(diǎn),∠B=30°,連接AD.

(1)若∠BAD=45°,求證:△ACD為等腰三角形;

(2)若△ACD為直角三角形,求∠BAD的度數(shù).

【答案】(1)見解析 (2) ∠BAD=60°或∠BAD=30°

【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)求出∠B=∠C=30°,根據(jù)三角形內(nèi)角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根據(jù)等腰三角形的判定得出即可;

2)有兩種情況:當(dāng)∠ADC=90°時,當(dāng)∠CAD=90°時,求出即可.

1)證明:∵AB=AC,∠B=30°,

∴∠B=∠C=30°,

∴∠BAC=180°﹣30°﹣30°=120°,

∵∠BAD=45°,

∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°

∴∠ADC=∠CAD,

∴AC=CD

△ACD為等腰三角形;

2)解:有兩種情況:當(dāng)∠ADC=90°時,

∵∠B=30°,

∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;

當(dāng)∠CAD=90°時,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°

∠BAD的度數(shù)是60°30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACD,CEABEBD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10.分組后頻數(shù)為4的一組為(  )

A. 5.5~7.5 B. 7.5~9.5 C. 9.5~11.5 D. 11.5~13.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)探究與發(fā)現(xiàn):如圖①,在RtABC中,∠BAC=90°,AB=AC,點(diǎn)D在底邊BC上,AE=AD,連結(jié)DE.

(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);

(2)當(dāng)點(diǎn)DBC (點(diǎn)B、C除外) 上運(yùn)動時,試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是必然事件的是________.(填序號)

①3個人分成兩組,一定有2人分在一組;

②隨意擲兩個完好的骰子,朝上一面的點(diǎn)數(shù)之和不小于2;

③明天北京會刮大風(fēng),出現(xiàn)沙塵暴;

④你百米可跑5秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個車間同時開始生產(chǎn)某種產(chǎn)品,產(chǎn)品總?cè)蝿?wù)量為m件,開始甲、乙兩個車間工作效率相同.乙車間在生產(chǎn)一段時間后,停止生產(chǎn),更換新設(shè)備,之后工作效率提高.甲車間始終按原工作效率生產(chǎn).甲、乙兩車間生產(chǎn)的產(chǎn)品總件數(shù)y與甲的生產(chǎn)時間x(時)的函數(shù)圖象如圖所示.

(1)甲車間每小時生產(chǎn)產(chǎn)品 件,a=

(2)求乙車間更換新設(shè)備之后y與x之間的函數(shù)關(guān)系式,并求m的值.

(3)若乙車間在開始更換新設(shè)備時,增加兩名工作人員,這樣可便更換設(shè)備時間減少0.5小時,并且更換后工作效率提高到原來的2倍,那么兩個車間完成原任務(wù)量需幾小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a3b﹣4ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一定能將三角形的面積分成相等的兩部分的是三角形的(  )

A. 高線 B. 中線 C. 角平分線 D. 都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組的解集,在數(shù)軸上表示正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案