【題目】某游泳館的游泳池長50米,甲、乙二人分別在游泳池相對的A、B兩邊同時向另一邊游去,其中s表示與A邊的距離,t表示游泳時間,如圖,l1 , l2分別表示甲、乙兩人的s與t的關(guān)系.

(1)l1表示誰到A邊的距離s與游泳時間t的關(guān)系;
(2)甲、乙哪個速度快?
(3)游泳多長時間,兩人相遇?
(4)t=30秒時,兩人相距多少米?

【答案】
(1)解:由于當 時,乙距離A為50米,所以l1表示誰到A邊的距離s與游泳時間t的關(guān)系
(2)解:由圖象可知,到達終點時,乙所花時間比甲少,故乙比較快
(3)解:當兩個人的函數(shù)圖象相交時,即兩個人相遇,此時為 s
(4)設(shè)l1表達式為 ,把 ; , 代入上式得 , k 1 = ,所以l1的表達式為 ,當 時, 。設(shè)l2表達式為 ,把 , 代入上式,得 ,所以l2的表達式為 ,當 , ,兩人相距 (米)
【解析】(1)當 t = 0 時,乙距離A為50米,所以l1表示乙到A邊的距離s與游泳時間t的關(guān)系。
(2)由圖象可知,到達終點時,乙所花時間比甲少,所以乙比較快。
(3)由圖象可知, t = 20時,兩個人相遇。
(4)設(shè)l1表達式為 s = k 1 t + b ,把 t = 20 , s = 20 ; t = 0 , s = 50 代入上式計算即可得到 b和 的值,則l1的表達式可求,再將t = 30 代入l1的表達式可求 s的值;由題意設(shè)l2表達式為 s = t,把 t = 20 , s = 20 代入上式,得 的值,l2的表達式可求,再將t = 30 代入l2的表達式可求 s的值,兩人相距 即為他們的距離之差。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等邊三角形ABC中,點D在AB上(點D與點A,B不重合),DE⊥BC,垂足為E,點P在BC上,且DP∥AC,△B′DE′與△BDE關(guān)于DP對稱.設(shè)BE=x,△B′DE′與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x<, ≤x<m與m≤x<n時,函數(shù)的解析式不同).

(1)填空:等邊三角形ABC的邊長為_____,圖2中a的值為_____;

(2)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2x+1)x+2=1,則x的值是(  )
A.0
B.﹣2
C.﹣2或0
D.﹣2、0、﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20130的值等于( 。
A.0
B.1
C.2013
D.﹣2013

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+my=﹣mx2+2x+2m是常數(shù),且m≠0)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則yx之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(2ab)2÷ab2=_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點

)分別求這兩個函數(shù)的表達式.

)將直線向上平移個單位長度后與軸交于點,與反比例函數(shù)圖象在第四象限內(nèi)的交點為,連接,求點的坐標及的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A地將一批物品運往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時間t(小時)變化的圖象,已知乙車到達B地后以30千米/小時的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:

(1)甲車出發(fā)多長時間后被乙車追上?
(2)甲車與乙車在距離A地多遠處迎面相遇?
(3)甲車從B地返回的速度多大時,才能比乙車先回到A地?

查看答案和解析>>

同步練習冊答案