(2005•寧夏)在半徑為2的⊙O中,弦AB的長(zhǎng)為,則弦AB所對(duì)的圓心角∠AOB的度數(shù)是    度.
【答案】分析:已知一個(gè)三角形三邊,先看三邊是否符合勾股定理的逆定理,如果符合,則該三角形為直角三角形.
解答:解:∵OA=OB=2,AB=,
∵OA2+OB2=AB2,
∴根據(jù)勾股定理的逆定理,△ABO是直角三角形,且∠AOB=90°,故填90.
點(diǎn)評(píng):已知三角形求邊長(zhǎng),一般是利用勾股定理的逆定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
(1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
(1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
(1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E在直角邊AC上(點(diǎn)E與A、C兩點(diǎn)均不重合),點(diǎn)F在斜邊AB上(點(diǎn)F與A、B兩點(diǎn)均不重合).
(1)若EF平分Rt△ABC的周長(zhǎng),設(shè)AE長(zhǎng)為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)AE的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧夏)在下面網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,請(qǐng)你畫出以格點(diǎn)為頂點(diǎn),面積為10個(gè)平方單位的等腰三角形,在給出的網(wǎng)格中畫出兩個(gè)符合條件且不全等的三角形.
(所畫的兩個(gè)三角形若全等視為1個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案