【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)如圖,已知格點(小正方形的頂點):、、,若為格點,請直接畫出所有以、為勾股邊且對角線相等的勾股四邊形;
(2)如圖,將繞頂點按順時針方向旋轉,得到,連結、,,求證:,即四邊形是勾股四邊形;
(3)如圖,在四邊形中,為等邊三角形,,,,求長.
【答案】(1)見解析 (2)見解析 (3)10
【解析】
(1)利用勾股定理計算畫出即可.
(2)首先證明△ABC≌△BDC,得出AC=DE,BC=BE,連接CE,進一步得出△BCE為等邊三角形;利用等邊三角形的性質,進一步得出△DCE是直角三角形,即可解答.
(3)將△ABC逆時針旋轉60°,即可得出上△ADE為直角三角形,再根據(jù)勾股定理求出ED的值即可解答.
(1)如圖1
(2)如圖2,連接EC.
根據(jù)旋轉的性質知△ABC≌△BDC,則BC=BD,AC=DE.
又∠CBE=60°
△CBE是等邊三角形
∠BCE=60°,BD=DE
∠DCB=30°
∠BCE+∠DCB=90°即∠DCE=90°
,即四邊形ABCD是勾股四邊形.
(3)如圖示,將△ABC逆時針旋轉60°,使C,與D點重合,得到△EBD,
則有:AB=AE,AC=ED,∠ABE=60,
∴△ABE為等邊三角形,
∠DAE=∠DAB+∠BAE=30°+60°=90°
△DAE為直角三角形
即:
故AC=10.
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個如圖可以自由轉動的轉盤,并規(guī)定:顧客每購買300元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅、綠或黃色區(qū)域,顧客就可以獲得100元、50元,20元的購物券.(轉盤被等分成20個扇形),已知甲顧客購物320元.
(1)他獲得購物券的概率是多少?
(2)他得到100元、50元、20元購物券的概率分別是多少?
(3)若要讓獲得20元購物券的概率變?yōu)?/span>,則轉盤的顏色部分怎樣修改?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,
(1)如果△ABC角平分線BD、CE相交與點O,則∠BOC_________。
(2)如果△ABC的高BD、CE相交與點O,求∠BOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE平分∠BCD與AB交于點E,BF平分∠ABC與AD交于點F,若,EF=4,則CD長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經過點A(﹣3,0)、B(0,3),C(1,0).
(1)求拋物線及直線AB的函數(shù)關系式;
(2)有兩動點D、E同時從O出發(fā),以每秒1個單位長度的相同的速度分別沿線段OA、OB向A、B做勻速運動,過D作PD⊥OA分別交拋物線和直線AB于P、Q,設運動時間為t(0<t<3).
①求線段PQ的長度的最大值;
②連接PE,當t為何值時,四邊形DOEP是正方形;
③連接DE,在運動過程中,是否存在這樣的t值,使PE=DE?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1) (-1)0+2-2-(-1)2012 (2)(2x2y)2 ·(-6xy4)÷(24x4y5)
(3)x 2-(x+2)(x-2) (4)(3-2x)(3+2x)+(2x-1)2
(5)(x-2)(x+2)-(x+1)(x-3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com