【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點(diǎn)O,AC=6,BD=8,∠AOD=65°,點(diǎn)E在BO上,AF∥CE交BD于點(diǎn)F.
(1)求證:四邊形AFCE是平行四邊形.
(2)當(dāng)點(diǎn)E在邊BO上移動(dòng)時(shí),平行四邊形AFCE能否為矩形?若能,此時(shí)BE的長為多少(直接寫出結(jié)果)?若不能,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)E在邊BO上移動(dòng)時(shí),平行四邊形AFCE能否為菱形?若能,此時(shí)BE的長為多少(直接寫出結(jié)果)?若不能,請(qǐng)說明理由.
【答案】(1)見解析;(2)平行四邊形AFCE能為矩形,此時(shí)BE=1;(3)平行四邊形AFCE不能為菱形,理由見解析.
【解析】
(1)四邊形ABCD為平行四邊形,又AF∥CE,易證得△AOF≌△COE,則可得OE=OF,又由OA=OC,即可判定四邊形AFCE是平行四邊形;
(2)當(dāng)EF=AC時(shí),平行四邊形AFCE為矩形,先得出BE=DF,再由AC=EF=6,BD=8,即可求得此時(shí)BE的長;
(3)由∠AOD=65°,可得AC與BD不垂直,即可得平行四邊形AFCE不能為菱形.
(1)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵AF∥CE,
∴∠OAF=∠OCE,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,又OA=OC,
∴四邊形AFCE是平行四邊形;
(2)解:平行四邊形AFCE能為矩形.
理由:∵四邊形AFCE是平行四邊形,
∴當(dāng)EF=AC=6時(shí),平行四邊形AFCE為矩形,
∴OE=OF,又OB=OD,
∴BE=DF,
∴2BE+EF=BD,
即2BE+6=8,
解得:BE=1,
∴當(dāng)BE=1時(shí),平行四邊形AFCE為矩形;
(3)解:平行四邊形AFCE不能為菱形.
理由:∵四邊形AFCE是平行四邊形,且∠AOD=65°,
即AC與BD不垂直,
∴平行四邊形AFCE不能為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點(diǎn)B為圓心、2為半徑的⊙B上有一動(dòng)點(diǎn)P.連接AP,若點(diǎn)C為AP的中點(diǎn),連接OC,則OC的最小值為( 。
A. 1 B. 2﹣1 C. D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)本校初2017屆500名學(xué)生中中考參加體育加試測試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績?cè)?/span>8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①是一個(gè)重要公式的幾何解釋.請(qǐng)你寫出這個(gè)公式;
(2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點(diǎn)在一條直線上.試證明∠ACE=90°;
(3)伽菲爾德(G a rfield,1881年任美國第20屆總統(tǒng))利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試該證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC 是等腰直角三角形,∠ABC=90°,AB平行x 軸,點(diǎn)C在 x 軸上,若點(diǎn)A,B分別在正比例函數(shù) y=6x 和 y=kx 的圖象上,則 k=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營戶用 1200 元錢按批發(fā)價(jià)從蔬菜批發(fā)市場買了西紅柿和豆角共 400 kg,然后在市場上按零售價(jià)出售,西紅柿和豆角當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:
品名 | 西紅柿 | 豆角 |
批發(fā)價(jià)(單位:元/kg) | 2.4 | 3.2 |
零售價(jià)(單位:元/kg) | 3.8 | 5.2 |
(1)該經(jīng)營戶所批發(fā)的西紅柿和豆角的質(zhì)量分別為多少 kg?
(2)如果西紅柿和豆角全部以零售價(jià)售出,他當(dāng)天賣出這些西紅柿和豆角賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD是∠BAC的平分線,G是AD上一點(diǎn),且AG=DG,連接BG并延長BG交AC于E,又過C作AD的垂線交AD于H,交AB為F,則下列說法:
①D是BC的中點(diǎn);
②BE⊥AC;
③∠CDA>∠2;
④△AFC為等腰三角形;
⑤連接DF,若CF=6,AD=8,則四邊形ACDF的面積為24.
其中正確的是________(填序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com