【題目】已知:如圖,∠ABC和∠ACB的平分線交于點O,EF經(jīng)過點O且平行于BC,分別與AB,AC交于點E,F.
(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù);
(2)若∠ABC=,∠ACB=,用,的代數(shù)式表示∠BOC的度數(shù).
(3)在第(2)問的條件下,若∠ABC和∠ACB鄰補(bǔ)角的平分線交于點O,其他條件不變,請畫出相應(yīng)圖形,并用,的代數(shù)式表示∠BOC的度數(shù).
【答案】(1)∠BOC=125°;(2);(3)
【解析】
試題(1)先根據(jù)角平分線的定義求出∠OBC+∠OCB的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠BOC的度數(shù)即可;
(2)先用α、β表示出∠OBC+∠OCB的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠BOC的度數(shù)即可;
(3)根據(jù)題意畫出圖形,再根據(jù)三角平分線的定義求出∠CBO+∠ACO的度數(shù),進(jìn)而可得出結(jié)論.
試題解析:(1)∵∠ABC和∠ACB的平分線交于點O,∠ABC=50°,∠ACB=60°,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×(50°+60°)=55°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°;
(2)∵∠ABC和∠ACB的平分線交于點O,∠ABC=α,∠ACB=β,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(α+β),
∴∠BOC=180°-(∠OBC+∠OCB)=180°-(α+β);
(3)如圖所示:
∵∠ABC和∠ACB鄰補(bǔ)角的平分線交于點O,
∴∠CBO+∠BCO= 180°-α+ 180°-β=180°- (α+β),
∴∠BOC=180°-[180°-(α+β)]=α+ β.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+b x+c經(jīng)過A,B,C三點,當(dāng)x≥0時,其圖象如圖所示.
(1)求拋物線的解析式,寫出拋物線的頂點坐標(biāo);
(2)畫出拋物線y=ax2+b x+c當(dāng)x<0時的圖象;
(3)利用拋物線y=ax2+b x+c,寫出x為何值時,y>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)正方形網(wǎng)格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形,在圖1正方形網(wǎng)格(每個小正方形邊長為1)中畫出格點△ABC,使AB=AC=5,BC=
(2)在△ABC中, AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖2所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.
①△ABC的面積為: .
②若△DEF三邊的長分別為、、,請在圖3的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字:
對于(﹣5)+(﹣9)+17 +(﹣3)
可以如下計算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)
=﹣1
上面這種方法叫拆項法,你看懂了嗎?
仿照上面的方法,請你計算:(﹣1)+(﹣2000)+4000+(﹣1999)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點.
(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙上一點,連接PD.已知PC=PD=BC.下列結(jié)論:
(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正確的個數(shù)為( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com