【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點A在x軸上,OA=4,OC=3,點D為BC邊上一點,以AD為一邊在與點B的同側(cè)作正方形ADEF,連接OE.當(dāng)點D在邊BC上運動時,OE的長度的最小值是 .
【答案】5
【解析】解:如圖所示:過點D作DG⊥OA,過點E作HE⊥DG.
∵DG⊥OA,HE⊥DG,
∴∠EHD=∠DGA=90°.
∴∠GDA+∠DAG=90°.
∵四邊形ADEF為正方形,
∴DE=AD,∠HDE+∠GDA=90°.
∴∠HDE=∠GAD.
在△HED和△GDA中 ,
∴△HED≌△GDA.
∴HE=DG=3,HD=AG.
設(shè)D(a,3),則DC=a,DH=AG=4﹣a.
∴E(a+3,7﹣a).
∴OE= = .
當(dāng)a=2時,OE有最小值,最小值為5 .
所以答案是:5 .
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為( 。
A. 小時 B. 小時 C. 小時 D. 小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象與函數(shù)y=x﹣ 的圖象如圖所示,則下列結(jié)論:①ab>0;②c>﹣ ;③a+b+c<﹣ ;④方程ax2+(b﹣1)x+c+ =0有兩個不相等的實數(shù)根.其中正確的有( )
A.4 個
B.3 個
C.2 個
D.1 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2 臺.
(1)求甲、乙兩種品牌空調(diào)的進貨價;
(2)該商場擬用不超過16000 元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請你幫該商場設(shè)計一種進貨方案,使得在售完這10 臺空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com