【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).

【答案】1.4m.

【解析】試題分析:根據(jù)題意知AE∥BD,可得∠AEC=∠BDC;從而得到△AEC∽△BDC,根據(jù)比例關系,計算可得AB的數(shù)值,即窗口的高度.

試題解析:由于陽光是平行光線,即AE∥BD,………1

所以∠AEC=∠BDC. 又因為∠C是公共角,

所以△AEC∽△BDC,從而有.………3

AC=AB+BC,DC=ECED,EC=3.9,ED=2.1,BC=1.2,

于是有,

解得 AB=1.4(m)。.………5

答:窗口的高度為1.4m。.………6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.

1)畫出△ABCAB邊上的中線CD;

2)畫出△ABC向右平移4個單位后的△A1B1C1;

3)圖中ACA1C1的關系是______;

4)圖中△ABC的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點A關于CN的對稱點為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點EP

(1)依題意補全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段, 之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DEBC,BE平分∠ABC,∠C=65°,∠ABC=50°.

(1)求∠BED的度數(shù);

(2)判斷BEAC的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明利用燈光下自己的影子長度來測量路燈的高度.如圖,CDEF是兩等高的路燈,相距27m,身高1.5m的小明(AB)站在兩路燈之間(D、BF共線),被兩路燈同時照射留在地面的影長BQ=4m,BP=5m

(1)小明距離路燈多遠?

(2)求路燈高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀第(1)題的解答過程,然后再解第(2)題

1)已知多項式2x3x2+m有一個因式是2x+1,m的值

解法一2x3x2+m=2x+1)(x2+ax+b),2x3x2+m=2x3+2a+1x2+a+2bx+b

比較系數(shù)得 解得 ,.

解法二2x3x2+m=A2x+1)(A為整式)

由于上式為恒等式,為方便計算了取, ,

2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),m、n的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( )

A. 6,0B. 6,3C. 6,5D. 42

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當點E運動到與點C的距離為1時,則△DEF的面積為___________.

查看答案和解析>>

同步練習冊答案