【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過(guò)點(diǎn)C,D作BA和BC的平行線,兩線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求四邊形ADCE的面積.
【答案】
(1)證明:∵DE∥BC,EC∥AB,
∴四邊形DBCE是平行四邊形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD為AB邊上的中線,
∴AD=DB=CD.
∴EC=AD.
∴四邊形ADCE是平行四邊形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四邊形ADCE是菱形
(2)解:Rt△ABC中,CD為AB邊上的中線,∠B=60°,BC=6,
∴AD=DB=CD=6.
∴AB=12,由勾股定理得 .
∵四邊形DBCE是平行四邊形,
∴DE=BC=6.
∴
【解析】(1)欲證明四邊形ADCE是菱形,需先證明四邊形ADCE為平行四邊形,然后再證明其對(duì)角線相互垂直;(2)根據(jù)勾股定理得到AC的長(zhǎng)度,由含30度角的直角三角形的性質(zhì)求得DE的長(zhǎng)度,然后由菱形的面積公式:S= ACDE進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹(shù)的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把直線y=x-1向下平移后過(guò)點(diǎn)(3,-2),則平移后所得直線的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多項(xiàng)式6πa3b2c2﹣x3y3z+m2n﹣110的次數(shù)是( )
A.10次
B.8次
C.7次
D.9次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD中,∠A:∠B:∠C:∠D的值可能是( )
A. 3:4:3:4 B. 5:2:2:5 C. 2:3:4:5 D. 3:3:4:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,∠QPN=α,∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C、D不重合).
(1)如圖①,當(dāng)α=90°時(shí),求證:DE+DF=AD.
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)? ,請(qǐng)給出證明.
(3)在(2)的條件下,將∠QPN繞點(diǎn)P旋轉(zhuǎn),若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與邊AD的延長(zhǎng)線交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E、C、F在一條直線上, AC∥DF,且AC=DF,請(qǐng)?zhí)砑右粋(gè)條件____,使△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點(diǎn)G.
(1) 試說(shuō)明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com