如圖所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC內(nèi),∠PBC=10°,∠PCB=30°,則∠PAB=________.

70°
分析:在BC下方取一點(diǎn)D,使得三角形ABD為等邊三角形,連接DP、DC,根據(jù)等邊三角形的性質(zhì)得到AD=AB=AC,求出∠DAC、∠ACD、∠ADC的度數(shù),根據(jù)三角形的內(nèi)角和定理求出∠ABC=∠ACB=50°,即∠CDB=140°=∠BPC,再證△BDC≌△BPC,得到PC=DC,進(jìn)一步得到等邊△DPC,推出△APD≌△APC,根據(jù)全等三角形的性質(zhì)得到∠DAP=∠CAP=10°,即可求出答案.
解答:解:在BC下方取一點(diǎn)D,使得三角形ABD為等邊三角形,連接DP、DC
∴AD=AB=AC,
∠DAC=∠BAC-∠BAD=20°,
∴∠ACD=∠ADC=80°,
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
∴∠CDB=140°=∠BPC,
又∠DCB=30°=∠PCB,BC=CB,
∴△BDC≌△BPC,
∴PC=DC,
又∠PCD=60°,
∴△DPC是等邊三角形,
∴△APD≌△APC,
∴∠DAP=∠CAP=∠DAC=20=10°,
∴∠PAB=∠DAP+∠DAB=10°+60°=70°.
故答案為:70°.
點(diǎn)評(píng):本題主要考查對(duì)等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,作輔助線得到全等三角形是解此題的關(guān)鍵,此題是一個(gè)拔高的題目,有一點(diǎn)難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過點(diǎn)A作AF∥BC交ED的延長(zhǎng)線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長(zhǎng)為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,那么BE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(dòng)(不包括點(diǎn)C),點(diǎn)P的運(yùn)動(dòng)速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(dòng)(不包括點(diǎn)A),運(yùn)動(dòng)速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長(zhǎng)時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過多長(zhǎng)時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案