如圖1,矩形MNPQ中,點(diǎn)E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.
(1)理解與作圖:在圖2,圖3中,點(diǎn)E,F(xiàn)分別在BC,CD邊上,試?yán)谜叫尉W(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)計算與猜想:求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
(3)啟發(fā)與證明:如圖4,為了證明上述猜想,小華同學(xué)嘗試延長GF交BC的延長線于M,試?yán)眯∪A同學(xué)給我們的啟發(fā)證明(2)中的猜想.
(1)作圖如下:
(2)四邊形EFGH的周長為,四邊形EFGH的周長也為。
猜想:矩形ABCD的反射四邊形的周長為定值。
(3)通過延長GH交CB的延長線于點(diǎn)N,求得,得出矩形ABCD的反射四邊形的周長為定值。
解析試題分析:解:(1)作圖如下:
(2)在圖2中, ,
∴四邊形EFGH的周長為。
在圖3中,,,
∴四邊形EFGH的周長為。
猜想:矩形ABCD的反射四邊形的周長為定值。
(3)延長GH交CB的延長線于點(diǎn)N,
∵,,
∴。
又∵FC=FC,
∴Rt△FCE≌Rt△FCM(ASA)。
∴EF=MF,EC=MC。
同理:NH=EH,NB=EB!郙N=2BC=16。
∵,,,∴。
∴GM=GN。
過點(diǎn)G作GK⊥BC于K,則。
∴。
∴四邊形EFGH的周長為!嗑匦蜛BCD的反射四邊形的周長為定值
考點(diǎn):網(wǎng)格問題,勾股定理,全等三角形的判定和性質(zhì),矩形的性質(zhì),等腰三角形的判定和性質(zhì)。
點(diǎn)評:新定義問題,利用網(wǎng)格問題構(gòu)造圖形,難度中等,關(guān)鍵在于考生能夠準(zhǔn)確理解題意,化繁為簡,利用所學(xué)知識解決問題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年北京市門頭溝區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖1,矩形MNPQ中,點(diǎn)E、F、G、H分別在NP、PQ、QM、MN上,若,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且,.
(1)在圖2、圖3中,點(diǎn)E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com