如圖1,矩形MNPQ中,點E、F、G、H分別在NP、PQ、QM、MN上,若,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且,
(1)在圖2、圖3中,點E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.

(1)如下圖;(2)定值是;(3)不是定值,分別是16、12

解析試題分析:(1)仔細分析題意,讀懂題中“反射四邊形”的特征即可作出圖形;
(2)根據(jù)題中“反射四邊形”的特征結合格點圖形的特征、勾股定理即可求得結果;
(3)根據(jù)題中“反射四邊形”的特征結合格點圖形的特征、圖形的面積公式即可求得結果
(1)如圖所示:

(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是定值,定值是
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積不是定值,它們的面積分別是16、12.
考點:應用與設計作圖
點評:作圖題是初中數(shù)學學習中的重要題型,在中考中比較常見,一般難度不大,需熟練掌握.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)如圖1,矩形MNPQ中,點E、F、G、H分別在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且AB=4,BC=8.

(1)在圖2、圖3中,點E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸寧)如圖1,矩形MNPQ中,點E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.
理解與作圖:
(1)在圖2,圖3中,點E,F(xiàn)分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
計算與猜想:
(2)求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
啟發(fā)與證明:
(3)如圖4,為了證明上述猜想,小華同學嘗試延長GF交BC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形MNPQ中,MN=6,PN=4,動點R從點N出發(fā),沿N→P→Q→M方向運動至點M處停止.設點R運動的路程為x,△MNR的面積為y,
(1)當x=3時,y=
9
9
;當x=12時,y=
6
6
;當y=6時,x=
2或12
2或12
;
(2)分別求當0<x<4、4≤x≤10、10<x<14時,y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江省杭州市高橋初中教育集團九年級第二學期期初質量檢測數(shù)學卷(帶解析) 題型:解答題

如圖1,矩形MNPQ中,點E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.


(1)理解與作圖:在圖2,圖3中,點E,F(xiàn)分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)計算與猜想:求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
(3)啟發(fā)與證明:如圖4,為了證明上述猜想,小華同學嘗試延長GF交BC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

同步練習冊答案