【題目】閱讀下面的例題:
例:解方程x2﹣2|x|﹣3=0
解:(1)當(dāng)x≥0時(shí),原方程可化為x2﹣2x﹣3=0,
解得x1=﹣1(舍去),x2=3
(2)當(dāng)x<0時(shí),原方程可化為x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.
綜上所述,原方程的根是x1=3,x2=﹣3.
解答問(wèn)題:
(1)如果我們將原方程化為|x|2﹣2|x|﹣3=0求解可以嗎?請(qǐng)你大膽試一下寫(xiě)出求解過(guò)程.
(2)依照題目給出的例題解法,解方程x2+2|x﹣2|﹣4=0
【答案】(1)x1=3,x2=﹣3;(2)x1=x2=1.
【解析】
當(dāng)絕對(duì)值內(nèi)的數(shù)不小于0時(shí),可直接去掉絕對(duì)值,而當(dāng)絕對(duì)值內(nèi)的數(shù)為負(fù)數(shù)時(shí),去絕對(duì)值時(shí),絕對(duì)值內(nèi)的數(shù)要變?yōu)樵瓉?lái)的相反數(shù).本題要求參照例題解題,要先對(duì)x的值進(jìn)行討論,再去除絕對(duì)值將原式化簡(jiǎn).
(1)當(dāng)x≥0時(shí),原方程可化為x2﹣2x﹣3=0,
解得x1=﹣1(舍去),x2=3
當(dāng)x<0時(shí),原方程可化為x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.
綜上所述,原方程的根是x1=3,x2=﹣3.
(2)當(dāng)x≥2時(shí),原方程可可化為x2+2x﹣4﹣3=0,解得x1=﹣1+ (舍去),x2=﹣1﹣(舍去).
當(dāng)x<2時(shí),原方程化為x2﹣2x+4﹣3=0,
解得x1=x2=1
綜上所述,原方程的根是x1=x2=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出 4臺(tái).商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利 4800 元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AB=AC,點(diǎn) O 是△ABC 的外心,∠BOC=60°,BC=2,則 S△ABC=_
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
【1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段 .
【1】在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說(shuō)明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫(xiě)作法,但要保留作圖痕跡.
【1】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說(shuō)明理由. 若此時(shí)AB=3,BD=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)在直線AC上方的拋物線上存在一點(diǎn)P,使△PAC的面積最大,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo)及△PAC面積的最大值;
(3)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,DA、DC分別切⊙O于A、C兩點(diǎn),∠ABC=114°,則∠ADC的度數(shù)為_______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E,過(guò)點(diǎn)E作EF⊥AB,垂足為F,連接FD.
(1)求證:DE是⊙O的切線;
(2)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】松雷中學(xué)校學(xué)生會(huì)干部對(duì)校學(xué)生會(huì)倡導(dǎo)的“助殘”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形高度之比為3:4:5:8:2,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人?
(2)若該校共有2310名學(xué)生,請(qǐng)估計(jì)全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=2x+m與拋物線y=ax2+ax+b有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求拋物線頂點(diǎn)Q的坐標(biāo)(用含a的代數(shù)式表示);
(2)說(shuō)明直線與拋物線有兩個(gè)交點(diǎn);
(3)直線與拋物線的另一個(gè)交點(diǎn)記為N.
①若-1≤a≤一,求線段MN長(zhǎng)度的取值范圍;
②求△QMN面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com