(2006•濟南)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.
(1)圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)

【答案】分析:(1)可根據(jù)已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.
(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,?AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.
解答:(1)解:△ABC≌△BAD.
證明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,
∴△ABC≌△BAD(SAS).

(2)證明:∵AH∥GB,BH∥GA,
∴四邊形AHBG是平行四邊形.
∵△ABC≌△BAD,
∴∠ABD=∠BAC.
∴GA=GB.
∴平行四邊形AHBG是菱形.

(3)解:需要添加的條件是AB=BC.
點評:本題考查全等三角形,四邊形等幾何知識,考查幾何論證和思維能力,第(3)小題是開放題,答案不唯一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省南通市啟東中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2006•濟南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點的坐標(biāo)為(3,0),C點的坐標(biāo)為(0,4).將矩形OABC繞O點逆時針旋轉(zhuǎn),使B點落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點M.
(1)求點B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點M1,點P運動到C點停止.設(shè)點P運動的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點P運動到點C時,平移后的矩形為PA3B3C3.請你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請簡述你的做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2006•濟南)如圖,L1是反比例函數(shù)y=在第一象限內(nèi)的圖象,且過點A(2,1),L2與L1關(guān)于x軸對稱,那么圖象L2的函數(shù)解析式為    (x>0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)模擬檢測試卷(2)(解析版) 題型:填空題

(2006•濟南)如圖,L1是反比例函數(shù)y=在第一象限內(nèi)的圖象,且過點A(2,1),L2與L1關(guān)于x軸對稱,那么圖象L2的函數(shù)解析式為    (x>0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟南市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•濟南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點的坐標(biāo)為(3,0),C點的坐標(biāo)為(0,4).將矩形OABC繞O點逆時針旋轉(zhuǎn),使B點落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點M.
(1)求點B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點M1,點P運動到C點停止.設(shè)點P運動的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點P運動到點C時,平移后的矩形為PA3B3C3.請你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請簡述你的做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟南市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•濟南)如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點的坐標(biāo)為(3,0),C點的坐標(biāo)為(0,4).將矩形OABC繞O點逆時針旋轉(zhuǎn),使B點落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點M.
(1)求點B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點M1,點P運動到C點停止.設(shè)點P運動的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點P運動到點C時,平移后的矩形為PA3B3C3.請你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請簡述你的做法.

查看答案和解析>>

同步練習(xí)冊答案