【題目】如圖,已知△ABC的周長(zhǎng)為20cm,現(xiàn)將△ABC沿AB方向平移2cm至△A′B′C′的位置,連接CC′,則四邊形AB′C′C的周長(zhǎng)是cm.
【答案】24
【解析】解:根據(jù)題意,得A的對(duì)應(yīng)點(diǎn)為A′,B的對(duì)應(yīng)點(diǎn)為B′,C的對(duì)應(yīng)點(diǎn)為C′,
所以BC=B′C′,BB′=CC′,
∴四邊形AB′C′C的周長(zhǎng)=CA+AB+BB′+B′C′+C′C=△ABC的周長(zhǎng)+2BB′=20+4=24cm.
所以答案是:24.
【考點(diǎn)精析】關(guān)于本題考查的平移的性質(zhì),需要了解①經(jīng)過(guò)平移之后的圖形與原來(lái)的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒(méi)有發(fā)生變化;②經(jīng)過(guò)平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(4,﹣3)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是( )
A. (4,3) B. (-4,3) C. (3,-4) D. (-3,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點(diǎn)D,BD的延長(zhǎng)線交AC于點(diǎn)E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)化簡(jiǎn)(x﹣2)2﹣(x+1)(x﹣1)出現(xiàn)了錯(cuò)誤,解答過(guò)程如下:
原式=x2+4﹣(x2﹣1)(第一步)
=x2+4﹣x2+1(第二步)
=5.(第三步)
(1)該同學(xué)的解答過(guò)程從第 步開(kāi)始出錯(cuò),錯(cuò)誤原因是 ;
(2)寫(xiě)出此題正確的解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,直線EF分別交AB,CD于點(diǎn)E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點(diǎn)P,試說(shuō)明△EPF為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點(diǎn)A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC.求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠A=∠F,∠C=∠D,求證:BD∥EC,下面是不完整的說(shuō)明過(guò)程,請(qǐng)將過(guò)程及其依據(jù)補(bǔ)充完整.
證明:∵∠A=∠F(已知)
∴AC∥ ,
∴∠D=∠1
又∵∠C=∠D(已知)
∴∠1=
∴BD∥CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道a+b=0時(shí),a3+b3=0也成立,若將a看成a3的立方根,b看成b3的立方根,我們能否得出這樣的結(jié)論:若兩個(gè)數(shù)的立方根互為相反數(shù),則這兩個(gè)數(shù)也互為相反數(shù).
(1)試舉一個(gè)例子來(lái)判斷上述猜測(cè)結(jié)論是否成立
(2)若與互為相反數(shù),求1﹣的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com