【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間.

【答案】2小時(shí).

【解析】試題分析:由題意可知ABC=120°,設(shè)巡邏船從出發(fā)到成功攔截所用時(shí)間為小時(shí)., ,建立直角三角形,過點(diǎn)的延長(zhǎng)線于點(diǎn),ABD=60°, ,可求得,中,利用勾股定理即可求出x.

試題解析:設(shè)巡邏船從出發(fā)到成功攔截所用時(shí)間為小時(shí).如圖1所示,由題得, , ,過點(diǎn)的延長(zhǎng)線于點(diǎn),在中, ,..中,由勾股定理得: ,解此方程得(不合題意舍去).所以巡邏船從出發(fā)到成功攔截所用時(shí)間為2小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線ABx軸相交于點(diǎn)C,ADx軸于點(diǎn)D.

(1)m=  

(2)求點(diǎn)C的坐標(biāo);

(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別是20、30、40,其三條角平分線將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線相交于點(diǎn),對(duì)于平面內(nèi)任意一點(diǎn),點(diǎn)直線,的距離分別為,,則稱有序?qū)崝?shù)對(duì)是點(diǎn)距離坐標(biāo),根據(jù)上述定義,距離坐標(biāo)的點(diǎn)的個(gè)數(shù)是(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市出租車計(jì)費(fèi)方法如圖所示,表示行駛里程,(元)表示車費(fèi),請(qǐng)根據(jù)圖象回答下列問題:

1)出租車的起步價(jià)是多少元;

2)當(dāng) 時(shí),關(guān)于的函數(shù)關(guān)系式;

3)若某乘客有一次乘出租車的車費(fèi)為32,求這位乘客乘車的里程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為直線與直線的交點(diǎn),點(diǎn)在線段,.

1)求點(diǎn)的坐標(biāo);

2)若為線段上一動(dòng)點(diǎn)(不與重合),的橫坐標(biāo)為,的面積為,請(qǐng)求出的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P,試分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo):

(1)點(diǎn)P軸上;

(2)點(diǎn)P的縱坐標(biāo)比橫坐標(biāo)大3;

(3)點(diǎn)P到兩坐標(biāo)的距離相等;

(4)點(diǎn)P在過A(2,-5)點(diǎn),且與軸平行的直線上。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 8×8的正方形網(wǎng)格中,△ABC的頂點(diǎn)在邊長(zhǎng)為1的小正方形的頂點(diǎn)上

(1) 填空∠ABC___________

(2) 若點(diǎn)A在網(wǎng)格所在的坐標(biāo)平面內(nèi)的坐標(biāo)為(1,-2),請(qǐng)建立平面直角坐標(biāo)系,D是平面直角坐標(biāo)系中一點(diǎn),并作出以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形,直接寫出滿足條件的D點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天水市某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在19天內(nèi)完成,約定這批粽子的出廠價(jià)為每只4元,為按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李紅第x天生產(chǎn)的粽子數(shù)量為y只,yx滿足如下關(guān)系:

(1)李紅第幾天生產(chǎn)的粽子數(shù)量為260只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來刻畫,若李紅第x天創(chuàng)造的利潤為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價(jià)﹣成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案