如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l1關(guān)于x軸對(duì)稱(chēng),以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D。
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)□ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說(shuō)明理由。注:計(jì)算結(jié)果不取近似值。

解:(1)設(shè)l2的解析式為y=ax2+bx+c(a≠0),
∵l1與x軸的交點(diǎn)為A(-2,0),C(2,0),
頂點(diǎn)坐標(biāo)是(0,-4),l2與l1關(guān)于x軸對(duì)稱(chēng),
∴l(xiāng)2過(guò)A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,4),
,∴a=-1,b=0,c=4,
即l2的解析式為y=-x2+4;
(2)設(shè)點(diǎn)B(m,n)為l1:y=x2-4上任意一點(diǎn),則n=m2-4(*)
∵四邊形ABCD是平行四邊形,點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱(chēng),
∴B、D關(guān)于原點(diǎn)O對(duì)稱(chēng),
∴點(diǎn)D的坐標(biāo)為D(-m,-n)
由(*)式可知,-n=-(m2-4)=-(-m)2+4,
即點(diǎn)D的坐標(biāo)滿(mǎn)足y=-x2+4,
∴點(diǎn)D在l2上;
(3)□ABCD能為矩形;
過(guò)點(diǎn)B作BH⊥x軸于H,由點(diǎn)B在l1:y=x2-4上,
可設(shè)點(diǎn)B的坐標(biāo)為(x0,x02-4),
則OH=|x0|,BH=|x02-4|,
易知,當(dāng)且僅當(dāng)BO=AO=2時(shí),□ABCD為矩形,
在Rt△OBH中,由勾股定理得,|x0|2+|x02-4|2=22,(x02-4)(x02-3)=0,
∴x0=±2(舍去)、x0,
所以,當(dāng)點(diǎn)B坐標(biāo)為B(,-1)或B′(-,-1)時(shí),□ABCD為矩形,
此時(shí),點(diǎn)D的坐標(biāo)分別是D(-,1)、D′(,1),
因此,符合條件的矩形有且只有2個(gè),即矩形ABCD和矩形AB′CD′,
設(shè)直線AB與y軸交于E,顯然,△AOE∽△AHB,
,

∴EO=4-2,
由該圖形的對(duì)稱(chēng)性知矩形ABCD與矩形AB′CD′重合部分是菱形,
其面積為S=2SΔACE=。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點(diǎn),B是拋物線l1上的動(dòng)點(diǎn)(B不與A、C重合),拋物線l2與l精英家教網(wǎng)1關(guān)于x軸對(duì)稱(chēng),以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求l2的解析式;
(2)求證:點(diǎn)D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);如果不能為矩形,請(qǐng)說(shuō)明理由.
注:計(jì)算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱(chēng),求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線l1:y=
1
2
(x-2)2-2與x軸分別交于O、A兩點(diǎn),將拋物線l1向上平移得到l2,過(guò)點(diǎn)A作AB⊥x軸交拋物線l2于點(diǎn)B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達(dá)式為( 。
A、y=
1
2
(x-2)2+4
B、y=
1
2
(x-2)2+3
C、y=
1
2
(x-2)2+2
D、y=
1
2
(x-2)2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶安區(qū)一模)如圖,已知拋物線l1:y=-x2+2x與x軸分別交于A、O兩點(diǎn),頂點(diǎn)為M.將拋物線l1關(guān)于y軸對(duì)稱(chēng)到拋物線l2.則拋物線l2過(guò)點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B,頂點(diǎn)為N,連接AM、MN、NB,則四邊形AMNB的面積( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•寶安區(qū)一模)如圖,已知拋物線l1:y=x2-6x+5與x軸分別交于A、B兩點(diǎn),頂點(diǎn)為M.將拋物線l1沿x軸翻折后再向左平移得到拋物線l2.若拋物線l2過(guò)點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為N,則四邊形AMCN的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案