【題目】在平面直角坐標(biāo)系中,如圖所示,點(diǎn).
(1)求直線的解析式;
(2)求的面積;
(3)一次函數(shù)(為常數(shù)).
①求證:一次函數(shù)的圖象一定經(jīng)過點(diǎn);
②若一次函數(shù)的圖象與線段有交點(diǎn),直接寫出的取值范圍.
【答案】(1);(2);(3)①見解析,②且.
【解析】
(1)根據(jù)待定系數(shù)求解析式即可;
(2)設(shè)直線與軸的交點(diǎn)為點(diǎn),求出點(diǎn)D的坐標(biāo),然后根據(jù)可得出結(jié)果;
(3)①把一次函數(shù)整理為的形式,再令x+3=0,求出y的值即可;
②根據(jù)直線一定經(jīng)過點(diǎn)A,而且與線段BC有交點(diǎn),可得直線在繞著點(diǎn)A從直線AC順時(shí)針旋轉(zhuǎn)到直線BC之間的區(qū)域,再結(jié)合a≠0從而得出結(jié)果.
解:(1)設(shè)直線的解析式是,將點(diǎn),點(diǎn)代入的,得
,解得,
∴直線的解析式是;
(2)設(shè)直線與軸的交點(diǎn)為點(diǎn),
則點(diǎn)的坐標(biāo)為,
;
(3)①證明:∵,
令x+3=0,得x=-3,此時(shí)y=2.
∴必過點(diǎn),即必過點(diǎn);
②當(dāng)直線與直線AC重合時(shí),可得4=3a+2,解得a=,
當(dāng)直線與直線AB重合時(shí),可得1=a+3a+2,解得a=,
∴a的取值范圍是:且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小微企業(yè)為加快產(chǎn)業(yè)轉(zhuǎn)型升級步伐,引進(jìn)一批A,B兩種型號的機(jī)器.已知一臺A型機(jī)器比一臺B型機(jī)器每小時(shí)多加工2個(gè)零件,且一臺A型機(jī)器加工80個(gè)零件與一臺B型機(jī)器加工60個(gè)零件所用時(shí)間相等.
(1)每臺A,B兩種型號的機(jī)器每小時(shí)分別加工多少個(gè)零件?
(2)如果該企業(yè)計(jì)劃安排A,B兩種型號的機(jī)器共10臺一起加工一批該零件,為了如期完成任務(wù),要求兩種機(jī)器每小時(shí)加工的零件不少于72件,同時(shí)為了保障機(jī)器的正常運(yùn)轉(zhuǎn),兩種機(jī)器每小時(shí)加工的零件不能超過76件,那么A,B兩種型號的機(jī)器可以各安排多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)|﹣2|+tan30°+(2018﹣π)0-()-1
(2)先化簡,再求值:(﹣1)÷,其中x的值從不等式組的整數(shù)解中選。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰的頂角的度數(shù)是,點(diǎn)是腰的黃金分割點(diǎn),將繞著點(diǎn)按照順時(shí)針方向旋轉(zhuǎn)一個(gè)角度后點(diǎn)落在點(diǎn)處,聯(lián)結(jié),當(dāng)時(shí),這個(gè)旋轉(zhuǎn)角是________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E為AB的中點(diǎn),F為線段BE上任意一點(diǎn),將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到線段EG.
(1)按請按要求補(bǔ)全圖形:連接BG過點(diǎn)G作GH⊥BG,交對角線AC于點(diǎn)H,連接DH;
(2)判斷DH與GH的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)和在直線上的射影分別為點(diǎn)和,那么線段叫做線段在直線上的射影.
如圖①,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)和在直線上的射影分別為點(diǎn)和,那么線段叫做線段在直線上的射影.
如圖②,、為線段外兩點(diǎn),,,垂足分別為、.
則點(diǎn)在上的射影是________點(diǎn),點(diǎn)在上的射影是________點(diǎn),
線段在上的射影是________,線段在上的射影是________;
根據(jù)射影的概念,說明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項(xiàng).(要求:畫出圖形,寫出說理過程.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com