【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,E為∠ACB平分線CD上一動點(diǎn)(不與點(diǎn)C重合),點(diǎn)E關(guān)于直線BC的對稱點(diǎn)為F,連接AE并延長交CB延長線于點(diǎn)H,連接FB并延長交直線AH于點(diǎn)G.
(1)求證:AE=BF.
(2)用等式表示線段FG,EG與CE的數(shù)量關(guān)系,并證明.
(3)連接GC,用等式表示線段GE,GC與GF的數(shù)量關(guān)系是 .
【答案】(1)詳見解析;(2)結(jié)論:FG2+EG2=2EC2;(3)結(jié)論:GE+GF=CG.
【解析】
(1)連結(jié)CF,證明△ACE≌△BCF(SAS)即可解決問題;
(2)結(jié)論:FG2+EG2=2EC2,連結(jié)EF,通過互補(bǔ)的角和四邊形內(nèi)角和證明∠EGF=90°,再由勾股定理即可解決問題;
(3)結(jié)論:GE+GF=CG,證明Rt△CNE≌Rt△CMF(HL),Rt△GCN≌Rt△GCM(HL)即可解決問題.
(1)證明:如圖1中,連接CF,
∵CD平分∠ACB,∠ACB=90°,
∴∠ACE=∠BCE=45°,
∵E,F關(guān)于CB對稱,
∴∠BCF=∠BCE=45°,CE=CF,
∴∠ACE=∠BCF,
在△ACE和△BCF中,
,
∴△ACE≌△BCF(SAS),
∴AE=BF;
(2)解:結(jié)論:FG2+EG2=2EC2,
理由:連接EF,CF,
∵△ACE≌△BCF,
∴∠AEC=∠BFC,
∵∠AEC+∠CEG=180°,
∴∠CEG+∠CFG=180°,
∴∠ECF+∠EGF=180°,
∵∠ECB=∠BCF=45°,
∴∠ECF=∠EGF=90°,
∴FG2+EG2=EF2,EF2=CE2+CF2,
∵CE=CF,
∴FG2+EG2=2CE2,
(3)如圖3中,結(jié)論:GE+GF=CG,
理由:連接CG,CF,作CM⊥BF于F,CN⊥AG于N,
∵△ACE≌△BCF,
∴CN=CM(全等三角形對應(yīng)邊上的高相等),
∵∠CNE=∠CMF=90°,CE=CF,
∴Rt△CNE≌Rt△CMF(HL),
∴EN=FM,
∵∠CNG=∠CMG=90°,CG=CG,
∴Rt△GCN≌Rt△GCM(HL),
∴GN=GM,∠CGN=∠CGM=45°,
∴CG=GN,
∴GE+GF=GNEN+GM+MF=2GN=CG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+與邊AB,BC分別相交于點(diǎn)M,N,函數(shù)y=(x>0)的圖象過點(diǎn)M.
(1)試說明點(diǎn)N也在函數(shù)y=(x>0)的圖象上;
(2)將直線MN沿y軸的負(fù)方向平移得到直線M′N′,當(dāng)直線M′N′與函數(shù)y═(x>0)的圖象僅有一個交點(diǎn)時,求直線M'N′的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一架伸縮樓梯托架固定在墻面上,托架始終與地面垂直且.如圖2, 旋轉(zhuǎn)支撐臂繞著點(diǎn)旋轉(zhuǎn),當(dāng)伸縮樓梯下放時,樓梯長米,點(diǎn)正好接觸地面,此時,旋轉(zhuǎn)支撐臂與樓梯托架之間的夾角為;當(dāng)伸縮樓梯上收時,旋轉(zhuǎn)支撐臂繞著點(diǎn)逆時針旋轉(zhuǎn),樓梯長變?yōu)?/span>米,此時,樓梯底部的腳墊到地面的距離為( )米.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位現(xiàn)要組織其市場和生產(chǎn)部的員工游覽該公園,門票價格如下:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
如果按部門作為團(tuán)體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費(fèi)為1245元;如果兩個部門合在一起作為一個團(tuán)體,同一時間購票游覽公園,則需支付門票費(fèi)為945元.那么該公司這兩個部的人數(shù)之差的絕對值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在太原迎澤西大街上有一種智能垃圾桶,這種智能垃圾桶不僅可以供行人休息,燈箱邊的中部還有USB接口可供行人充電.此種垃圾桶的側(cè)面示意圖如圖所示,其中AC∥ED,AB∥EF∥GH,CD=20cm,DE=60cm,EF=100m,GH=80cm,∠CDE=∠EFG=90°,∠DEF=130°,則此種垃圾桶的高度(C到地面的距離)約為________cm.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)繞點(diǎn)A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.
①如圖2,當(dāng)△ABC為等邊三角形時,AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時,猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價與一件乙種玩具的進(jìn)價的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價分別是多少元?
(2)商場計劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com