【題目】某開發(fā)商的經(jīng)適房的三個居民小區(qū)A、B、C在同一條直線上,位置如圖所示.其中小區(qū)B到小區(qū)A、C的距離分別是70m和150m,現(xiàn)在想在小區(qū)A、C之間建立一個超市,要求各小區(qū)居民到超市總路程的和最小,那么超市的位置應(yīng)建在( 。
A.小區(qū)AB.小區(qū)BC.小區(qū)CD.AC的中點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)動車出發(fā)前油箱內(nèi)有油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升.油箱中余油量()與行駛時(shí)間()之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問題:
(1)機(jī)動車行駛后加油,途中加油 升:
(2)根據(jù)圖形計(jì)算,機(jī)動車在加油前的行駛中每小時(shí)耗油多少升?
(3)如果加油站距目的地還有,車速為,要到達(dá)目的地,油箱中的油是否夠用?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分線 D.∠BAD=120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD,延長AB到E使BE=AB,連接BD,ED,EC,若ED=AD.
(1)求證:四邊形BECD是矩形;
(2)連接AC,若AD=4,CD= 2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將連續(xù)的奇數(shù)1,3,5,7,9,…排成如圖所示的數(shù)表.
(1)探索任意一個十字形框中的五個數(shù)之和與中間的數(shù)的關(guān)系是 .
(2)若十字框中的五數(shù)之和是2015,請求出此時(shí)框中的五個數(shù)分別是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個正方形邊長分別為a、b,且滿足a b 10, ab 12,圖中陰影部分的面積為( )
A.100B.32C.144D.36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距90km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l2表示兩人離A地的距離S(km)與時(shí)間t(h)的關(guān)系,結(jié)合圖象回答下列問題
(1)表示甲離A地的距離與時(shí)間關(guān)系的圖象是 (填l1或l2);
(2)甲的速度是 km/h;乙的速度是 km/h
(3)甲出發(fā)后多少時(shí)間兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列一段文字,在回答后面的問題.已知在平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離公式,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為|x2-x1|或|y2-y1|.
(1)已知A(2,4),B(-3,-8),試求A,B兩點(diǎn)間的距離.
(2)已知A,B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A,B兩點(diǎn)間的距離.
(3)已知一個三角形各頂點(diǎn)坐標(biāo)為A(1,1),B(2,3),C(4,2),你能判定此三角形的形狀嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com