【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.

(1)求拋物線的函數(shù)關(guān)系式;

(2)判斷ABM的形狀,并說明理由.

【答案】(1)y=﹣1;(2) ABM為直角三角形.理由詳見解析.

【解析】

試題分析:(1)由條件可分別求得A、B的坐標(biāo),設(shè)出拋物線解析式,利用待定系數(shù)法可求得拋物線解析式;

(2)結(jié)合(1)中A、B、C的坐標(biāo),根據(jù)勾股定理可分別求得AB、AM、BM,可得到,可判定ABM為直角三角形.

試題解析:(1)A點(diǎn)為直線y=x+1與x軸的交點(diǎn),

A(﹣1,0),

又B點(diǎn)橫坐標(biāo)為2,代入y=x+1可求得y=3,

B(2,3),

拋物線頂點(diǎn)在y軸上,

可設(shè)拋物線解析式為y=+c,

把A、B兩點(diǎn)坐標(biāo)代入可得

解得,

拋物線解析式為y=﹣1;

(2)ABM為直角三角形.理由如下:

由(1)拋物線解析式為y=﹣1,可知M點(diǎn)坐標(biāo)為(0,﹣1),

=2,=18,=20,

,

∴△ABM為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2m2﹣18=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,CH是底邊上的高線,點(diǎn)P是線段CH上不與端點(diǎn)重合的任意一點(diǎn),連接AP交BC于點(diǎn)E,連接BP交AC于點(diǎn)F.
(1)證明:∠CAE=∠CBF;
(2)證明:AE=BF;
(3)以線段AE,BF和AB為邊構(gòu)成一個(gè)新的三角形ABG(點(diǎn)E與點(diǎn)F重合于點(diǎn)G),記△ABC和△ABG的面積分別為SABC和SABG , 如果存在點(diǎn)P,能使得SABC=SABG , 求∠ACB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是 =﹣1,﹣1的差倒數(shù)是 = .已知a1= ,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推,則a2016=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅設(shè)計(jì)了如圖所示的一個(gè)計(jì)算程序:
根據(jù)這個(gè)程序解答下列問題:
(1)若小剛輸入的數(shù)為﹣4,則輸出結(jié)果為 ,
(2)若小紅的輸出結(jié)果為123,則她輸入的數(shù)為 ,
(3)這個(gè)計(jì)算程序可列出算式為 , 計(jì)算結(jié)果為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各式中,應(yīng)填入“(-y)”的是(

A. -y3·______=-y4 B. 2y3·______=-2y4

C. (-2y)3·______=-8y4 D. (-y)12·______=-3y13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°, ABC=60°,BC=6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB方向以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿射線BC方向以每秒2個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),PQ同時(shí)停止運(yùn)動(dòng),連結(jié)PQ、QA.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t.

1)當(dāng)CQ=2BP時(shí),t的值;

2)當(dāng)t為何值時(shí)QP=QA;

3若線段PQ的中垂線與線段BC相交(包括線段的端點(diǎn)),t的取值范圍是 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸, 軸分別交于兩點(diǎn),把沿著直線翻折后得到,則點(diǎn)的坐標(biāo)是 ___________

查看答案和解析>>

同步練習(xí)冊(cè)答案