【題目】如圖,在ABCD中,EBC邊上一點(diǎn).且BE=EC,BD,AE相交于點(diǎn)F.

(1)求△BEF的周長與△AFD的周長之比;

(2)若△BEF的面積S△BEF=6cm2.求△AFD的面積S△AFD

【答案】(1)1:3(2)54

【解析】

(1)先利用平行四邊形的性質(zhì)得AD=BC,AD∥BC,再利用BE=EC得到BE=AD,接著證明△BEF∽△DAF,然后利用相似三角形的性質(zhì)可得到△BEF的周長與△AFD的周長之比;

(2)根據(jù)相似三角形的性質(zhì)計(jì)算△AFD的面積.

(1)∵四邊形ABCD為平行四邊形,

AD=BC,ADBC,

BE=EC,

BE=BC,

BE=AD,

ADBE,

∴△BEF∽△DAF,

∴△BEF的周長:△AFD的周長=BE:AD=1:3;

(2)∵△BEF∽△DAF,

∴△BEF的面積:△AFD的面積=12:32

SAFD=9SBEF=9×6=54(cm2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑CD垂直于弦AB,垂足為E,FDC延長線上一點(diǎn),且∠CBF=∠CDB

1)求證:FB⊙O的切線;

2)若AB=8,CE=2,求sin∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面從認(rèn)知、延伸、應(yīng)用三個層面來研究一種幾何模型.

1)如圖,已知點(diǎn)E是線段BC上一點(diǎn),若∠AED=∠B=∠C.求證 ABE∽△ECD

2)如圖,已知點(diǎn)E、F是線段BC上兩點(diǎn),AEDF交于點(diǎn)H,若∠AHD=∠B=∠C

求證:△ABE∽△FCD

3)如圖,⊙O是等邊△ABC的外接圓,點(diǎn)D上一點(diǎn),連接BD并延長交AC的延長線于點(diǎn)E;連接CD并延長交AB的延長線于點(diǎn)F. 猜想BF、BC、CE三線段的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BCDB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點(diǎn)A和點(diǎn)A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC外接圓O上的點(diǎn),在以下判斷中,不正確的是

A、當(dāng)弦PB最長時,ΔAPC是等腰三角形 B、當(dāng)ΔAPC是等腰三角形時,POAC

C、當(dāng)POAC時,ACP=300 D、當(dāng)ACP=300,ΔPBC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點(diǎn)是邊上一個動點(diǎn),過作直線.設(shè)的平分線于點(diǎn),交的外角平分線于點(diǎn)

1)求證:;

2)若,求的長;

3)當(dāng)點(diǎn)在邊上運(yùn)動到什么位置時,四邊形是矩形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案