【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是(  )

A. B. C. D.

【答案】C

【解析】

A、加一公共角,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似可以得結(jié)論;

B、加一公共角,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似可以得結(jié)論;

C、其夾角不相等,所以不能判定相似;

D、其夾角是公共角,根據(jù)兩邊的比相等,且夾角相等,兩三角形相似.

A、∵∠A=A,ACP=B,

∴△ACP∽△ABC,

所以此選項(xiàng)的條件可以判定ACP∽△ABC;

B、∵∠A=A,APC=ACB,

∴△ACP∽△ABC,

所以此選項(xiàng)的條件可以判定ACP∽△ABC;

C、

當(dāng)∠ACP=B時(shí),ACP∽△ABC,

所以此選項(xiàng)的條件不能判定ACP∽△ABC;

D、

又∠A=A,

∴△ACP∽△ABC,

所以此選項(xiàng)的條件可以判定ACP∽△ABC,

本題選擇不能判定ACP∽△ABC的條件,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 中,∠C90°,AB10cmBC6cm,若動(dòng)點(diǎn) P 從點(diǎn) C開始,按 C→A→B→C 的路徑運(yùn)動(dòng),且速度為每秒 1cm,設(shè)出發(fā)的時(shí)間為 t 秒.

1)出發(fā) 2 秒后,求△ABP 的周長(zhǎng).

2)當(dāng) t 為幾秒時(shí),BP 平分∠ABC

3)另有一點(diǎn) Q,從點(diǎn) C 開始,按 C→B→A→C 的路徑運(yùn)動(dòng),且速度為每秒 2cm,若 P、Q 兩點(diǎn)同時(shí)出發(fā),當(dāng) P、Q 中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng) t 為何值時(shí),直 PQ △ABC 的周長(zhǎng)分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象的對(duì)稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號(hào)).

若圖象過點(diǎn)(﹣3,y1)、(2y2),則y1y2;

ac0;

③2ab0;

b24ac0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)

(1)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A'B'C';

(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△ABC″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P垂直于AC的直

線交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC2,BD1,APx,AMN的面積為y,則

y關(guān)于x的函數(shù)圖象大致形狀是【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC邊上一點(diǎn).且BE=EC,BD,AE相交于點(diǎn)F.

(1)求△BEF的周長(zhǎng)與△AFD的周長(zhǎng)之比;

(2)若△BEF的面積S△BEF=6cm2.求△AFD的面積S△AFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于點(diǎn)D,延長(zhǎng)AO交⊙O于點(diǎn)E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由邊長(zhǎng)為1的小正方形組成的格點(diǎn)中,建立如圖平面直角坐標(biāo)系,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;

(2)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2;

(3)請(qǐng)你判斷△AA1A2與△CC1C2的相似比;若不相似,請(qǐng)直接寫出△AA1A2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(1,4)B(4,n)兩點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當(dāng)x0時(shí),kx+b的解集.

(3)點(diǎn)Px軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案