【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開.

①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)

【答案】(1);(2)①證明見解析;②見解析.

【解析】(1)依據(jù)△BCE是等腰直角三角形,即可得到CE=BC,由圖②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;

(2)①由翻折可得,PH=PC,即PH2=PC2,依據(jù)勾股定理可得AH2+AP2=BP2+BC2,進而得出AP=BC,再根據(jù)PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),進而得到∠CPH=90°;

②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿著過D的直線翻折,使點A落在CD邊上,此時折痕與AB的交點即為P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,進而得到CP平分∠BCE,故沿著過點C的直線折疊,使點B落在CE上,此時,折痕與AB的交點即為P.

(1)由圖①,可得∠BCE=∠BCD=45°,

又∵∠B=90°,

∴△BCE是等腰直角三角形,

,即CE=BC,

由圖②,可得CE=CD,而AD=BC,

∴CD=AD,

=;

(2)①設AD=BC=a,則AB=CD=a,BE=a,

∴AE=(﹣1)a,

如圖③,連接EH,則∠CEH=∠CDH=90°,

∵∠BEC=45°,∠A=90°,

∴∠AEH=45°=∠AHE,

∴AH=AE=(﹣1)a,

設AP=x,則BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2

∴AH2+AP2=BP2+BC2

即[(﹣1)a]2+x2=(a﹣x)2+a2

解得x=a,即AP=BC,

又∵PH=CP,∠A=∠B=90°,

∴Rt△APH≌Rt△BCP(HL),

∴∠APH=∠BCP,

又∵Rt△BCP中,∠BCP+∠BPC=90°,

∴∠APH+∠BPC=90°,

∴∠CPH=90°;

②折法:如圖,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,

故沿著過D的直線翻折,使點A落在CD邊上,此時折痕與AB的交點即為P;

折法:如圖,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,

由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,

又∵∠DCH=∠ECH,

∴∠BCP=∠PCE,即CP平分∠BCE,

故沿著過點C的直線折疊,使點B落在CE上,此時,折痕與AB的交點即為P.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(a0),(b,0),且滿足現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點AB的對應點C,D,連接AC,BD

1)求點CD的坐標及四邊形ABDC的面積;

2)在y軸上是否存在一點M,連接MA,MB,使SMAB=S四邊形ABDC?若存在這樣一點,求出點M的坐標;若不存在,試說明理由;

3)點P是射線BD上的一個動點(不與B,D重合),連接PC,PA,求∠CPA與∠DCP、∠BAP之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各圖中的MA1與NAn平行.

(1)圖①中的A1+A2= 度,圖②中的A1+A2+A3= 度,

圖③中的A1+A2+A3+A4= 度,圖④中的A1+A2+A3+A4+A5= 度,…,

第⑩個圖中的A1+A2+A3++A10=

(2)第n個圖中的A1+A2+A3++An=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸于點C,已知點D(0,-).

(1)求直線AC的解析式;

(2)如圖1,P為直線AC上方拋物線上的一動點,當PBD的面積最大時,過PPQx軸于點Q,M為拋物線對稱軸上的一動點,過My軸的垂線,垂足為點N,連接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)問的條件下,將得到的PBQ沿PB翻折得到PBQ′,將PBQ′沿直線BD平移,記平移中的PBQ′P′B′Q″,在平移過程中,設直線P′B′x軸交于點E,則是否存在這樣的點E,使得B′EQ″為等腰三角形?若存在,求此時OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DEBC于點E.

(1)試判斷DE與⊙O的位置關系,并說明理由;

(2)過點DDFAB于點F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,.BBE//AC.

(1)BEAC之間的距離;

(2)FBE上一點,連接AF,過CCG//AFBEG.若∠FAB=15°,

①依題意補全圖形;

②求證:四邊形AFGC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】)如圖,中,,上任意一點,以點為中心,取旋轉(zhuǎn)角等于,把逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形.

)如圖,等邊中,邊上一點,的延長線上,且

求證:

)已知:如圖,在中,邊上一點,延長線上一點,且,已知,.寫出求線段長的具體思路(即添加輔助線的方法,推導的具體步驟詳寫,其它的寫出關鍵步驟或結(jié)果即可),并給出最后結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點BE,C,F在一條直線上,ACDE,A=D,AB=DF

1)試說明:ABC≌△DFE;

2)若BF=13EC=7,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一條筆直的公路進行跑步訓練,可以用如圖所示一條直線上來刻畫他在公路上跑步情境.假定向右跑步的路程記為正數(shù),向左跑步的路程記為負數(shù),則所跑步的各段路程依次記為:+5,-3-6+8,-6+12,-10(單位:百米)

1)小明最后是否回到出發(fā)點?

2)小明在跑步過程中距離出發(fā)點最遠是多少米?

3)在跑步過程中,如果小明每跑1千米會消耗約60卡熱量,那么小明此次訓練一共會消耗多少卡?

查看答案和解析>>

同步練習冊答案