【題目】如圖所示,拋物線經(jīng)過原點(diǎn)O與點(diǎn)A(6,0)兩點(diǎn),過點(diǎn)A作ACx軸,交直線y=2x﹣2于點(diǎn)C,且直線y=2x﹣2與x軸交于點(diǎn)D.

(1)求拋物線的解析式,并求出點(diǎn)C和點(diǎn)D的坐標(biāo);

(2)求點(diǎn)A關(guān)于直線y=2x﹣2的對(duì)稱點(diǎn)A′的坐標(biāo),并判斷點(diǎn)A′是否在拋物線上,并說明理由;

(3)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

【答案】(1),C(6,10),D(1,0);(2)A′(﹣2,4),A′在拋物線上;(3)l=,(﹣2x6),l的最大值為

【解析】

試題分析:(1)把點(diǎn)O(0,0),A(6,0)代入,得,解得,拋物線解析式為

當(dāng)x=6時(shí),y=2×6﹣2=10,當(dāng)y=0時(shí),2x﹣2=0,解得x=1,點(diǎn)C坐標(biāo)(6,10),點(diǎn)D的坐標(biāo)(1,0)

(2)過點(diǎn)A′作AFx軸于點(diǎn)F,點(diǎn)D(1,0),A(6,0),可得AD=5,在RtACD中,CD==,點(diǎn)A與點(diǎn)A′關(guān)于直線y=2x﹣2對(duì)稱,∴∠AED=90°,S△ADC=×AE=×5×10,解得AE=,AA′=2AE=,DE==,∵∠AED=AFA′=90°,DAE=A′AF,∴△ADE∽△AA′F,,解得AF=4,A′F=8,OF=8﹣6=2,點(diǎn)A′坐標(biāo)為(﹣2,4),當(dāng)x=﹣2時(shí),y=,A′在拋物線上.

(3)點(diǎn)P在拋物線上,則點(diǎn)P(x,),設(shè)直線A′C的解析式為y=kx+b,直線A經(jīng)過A′(﹣2,4),C(6,10)兩點(diǎn),,解得,直線A′C的解析式為,點(diǎn)Q在直線A′C上,PQAC,點(diǎn)Q的坐標(biāo)為(x,),PQAC,又點(diǎn)Q在點(diǎn)P上方,l=()﹣()=,l與x的函數(shù)關(guān)系式為l=,(﹣2x6),l==,當(dāng)x=時(shí),l的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題:探索發(fā)現(xiàn)
(1)分解因式:①(1+x)+x(1+x)=()()=(2
②(1+x)+x(1+x) + x(1+x)2
③(1+x)+x(1+x) + x(1+x)2 + x(1+x)3
(2)根據(jù)(1)的規(guī)律,直接寫出多項(xiàng)式:(1+x) +x(1+x) + x(1+x)2+…+ x(1+x)2017分解因式的結(jié)果:
(3)變式: = .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點(diǎn)E,求證:

(1)∠1=∠BAD;

(2)BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ax=3,ay=2,則a2x+y等于( 。

A. 6 B. 7 C. 8 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1.2計(jì)算3.4分解因式)
(1)( +1)0﹣(﹣ 2+22
(2)(2a﹣3b)(﹣3b﹣2a)
(3)3m2﹣24m+48
(4)x3y﹣4xy.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對(duì)稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A

(1)求拋物線的解析式;

(2)若點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動(dòng)點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過點(diǎn)B的切線交CD的延長線于E.

(1)求證:DA平分∠CDO;

(2)若AB=12,求圖中陰影部分的周長之和(參考數(shù)據(jù):π=3.1,=1.4,=1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC向上平移4個(gè)的那位長度,再向右平移3個(gè)單位長度,得到△A′B′C′.

(1)在圖中畫出△A′B′C′;
(2)連接A′A、C′C,求四邊形A′AC′C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按一定規(guī)律排列的一列數(shù):21 , 22 , 23 , 25 , 28 , 213 , …,若x、y、z表示這列數(shù)中的連續(xù)三個(gè)數(shù),猜想x、y、z滿足的關(guān)系式是

查看答案和解析>>

同步練習(xí)冊(cè)答案