【題目】問(wèn)題背景:在△ABC中,AB,BCAC三邊的長(zhǎng)分別為,求這個(gè)三角形的面積,小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣不需要求高,而借用網(wǎng)格就能計(jì)算出它的面積.請(qǐng)將△ABC的面積直接填寫(xiě)在橫線上   

思維拓展:我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC中,ABBC,AC三邊長(zhǎng)分別為,2a0),請(qǐng)利用圖的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,直接寫(xiě)出此三角形最長(zhǎng)邊上的高是   

【答案】問(wèn)題背景: ;思維拓展: a

【解析】

問(wèn)題背景:根據(jù)分割法求三角形的面積.

思維拓展:a是直角邊長(zhǎng)為a,2a的直角三角形的斜邊;2是直角邊長(zhǎng)為2a,2a的直角三角形的斜邊;是直角邊長(zhǎng)為a4a的直角三角形的斜邊,把它整理為一個(gè)矩形的面積減去三個(gè)直角三角形的面積,再如圖作BHACH.利用面積法求解即可.

解:?jiǎn)栴}背景:SABC3×3×1×2×1×3×2×3

思維拓展:如圖作BHACH

SABCACBH2a×4a×2a×2a×a×2a×a×4a3a2,

×a×BH3a2

BHa

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,交AC于G,F(xiàn)是AD的中點(diǎn).

(1)求證:四邊形ADCE是平行四邊形;

(2)若EB是∠AEC的角平分線,請(qǐng)寫(xiě)出圖中所有與AE相等的邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1

2)已知,求的值

3(x+y-z)(x-y+z)

4[(x+2y)(x-2y)-(x+4y)2]÷4y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓pkPa是氣體體積Vm3的反比例函數(shù),其圖象如圖所示

1寫(xiě)出這一函數(shù)的表達(dá)式

2當(dāng)氣體體積為1 m3時(shí)氣壓是多少?

3當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A(2 ,1),直線AB與反比例函數(shù)圖象交與另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.

(1)求反比例函數(shù)的解析式;

(2)求tan∠DAC的值及直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

200

100

若用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點(diǎn)A,PB與AC的延長(zhǎng)線交于點(diǎn)M,COB=APB.

(1)求證:PB是O的切線;

(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案