【題目】如圖,EBC的中點,點ADE上,且∠BAE=∠CDE.

求證:ABCD .

【答案】見解析

【解析】

此題要證明AB=CD,不能通過證明△ABE和△CED全等得到,因為根據(jù)已知條件無法證明它們全等;那么可以利用等腰三角形的性質來解題,為此必須把ABCD通過作輔助線轉化到一個等腰三角形中,而延長DEF,使EF=DE,連接BF就可以達到要求,然后利用全等三角形的判定與性質就可以證明題目的問題.

證明:延長DE至點F,使EFDE,連接BF.

EBC的中點

BECE

BEFCED

∴△BEF≌△CED

∴∠BFE=∠CDE,BFCD

又∵∠BAE=∠CDE

∴∠BFE=∠BAE

ABBF

又∵BF=CD,

ABCD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CA=CB,∠ABC=72°,BD是高線,BE是角平分線,若AB=12cm,則CE=_______cm,則∠DBE=_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售一種新型節(jié)能產品,現(xiàn)準備從國內和國外兩種銷售方案中選擇一種進行銷售.若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w(元).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,設月利潤為w(元).

(1)當x=1000時,y= 元/件,w= 元;

(2)分別求出w,w與x間的函數(shù)關系式(不必寫x的取值范圍);

(3)當x為何值時,在國內銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,,,P、Q分別在BC、CA上,并且AP、BQ分別是∠BAC、∠ABC的角平分線.求證:

1;

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為統(tǒng)籌安排大課間體育活動,在各班隨機選取了一部分學生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進行調查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計圖.

(1)學校采用的調查方式是   ;學校共選取了   名學生;

(2)補全統(tǒng)計圖中的數(shù)據(jù):條形統(tǒng)計圖中羽毛球   人、乒乓球   人、其他   人、扇形統(tǒng)計圖中其他   %;

(3)該校共有1200名學生,請估計喜歡“乒乓球”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富學生課余生活,某區(qū)教育部分準備在七年級開設興趣課堂,為了了解學生對音樂、書法、球類、繪畫這四個興趣小組的喜愛情況,在全區(qū)進行隨機抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:

1)此次共調查了多少名同學?

2)將條形圖補充完整,并計算扇形統(tǒng)計圖中音樂部分的圓心角的度數(shù);

3)如果該區(qū)七年級共有2000名學生參加這4個課外興趣小組,則參加繪畫興趣小組的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣+bx+c與y軸交于點C,與x軸的兩個交點分別為A(﹣4,0),B(1,0).

(1)求拋物線的解析式;

(2)已知點P在拋物線上,連接PC,PB,若PBC是以BC為直角邊的直角三角形,求點P的坐標;

(3)已知點E在x軸上,點F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連結一四邊形各邊的中點,若所得的四邊形是一個菱形,則原四邊形一定是( ).

A.矩形B.對角線相互垂直的四邊形

C.平行四邊形D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知△ABC的頂點均為網(wǎng)格線的交點.

1)將△ABC向下平移5個單位長度,再向左平移1個單位長度,畫出平移后的△A1B1C1;

2)畫出△A1B1C1關于直線l軸對稱的△A2B2C2;

3)將△ABC繞點C逆時針旋轉90°,畫出旋轉后的△A3B3C3A、A3、B、B3為頂點的四邊形的面積為   

查看答案和解析>>

同步練習冊答案