如圖,直線y=-
34
x經(jīng)過(guò)拋物線y=ax2+8ax-3的頂點(diǎn)M,點(diǎn)P(x,y)是拋物線上的動(dòng)點(diǎn),點(diǎn)Q精英家教網(wǎng)是拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)PQ∥OM時(shí),設(shè)線段PQ的長(zhǎng)為d,求d關(guān)于x的函數(shù)解析式;
(3)當(dāng)以P、Q、O、M四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求P、Q兩點(diǎn)的坐標(biāo).
分析:(1)拋物線y=ax2+8ax-3的頂點(diǎn)可以用a表示出來(lái),把這個(gè)點(diǎn)的坐標(biāo)代入直線的解析式就可以求出a的值.得到二次函數(shù)的解析式.
(2)求出直線OM的解析式.設(shè)P的坐標(biāo)是(x,-
3
8
x2-3x-3),根據(jù)直線斜率的含義即可求得PQ的長(zhǎng).
(3)線段OM的長(zhǎng)度可以求出,進(jìn)而求出OM的解析式,便可解決.
解答:精英家教網(wǎng)解:(1)拋物線y=ax2+8ax-3的頂點(diǎn)是(-4,-16a-3),代入y=-
3
4
x,
得到-16a-3=3,
解得a=-
3
8

因而函數(shù)是y=-
3
8
x2-3x-3

(2)∵a=-
3
8
,∴-16a-3=3,
∴拋物線y=-
3
8
x2-3x-3的頂點(diǎn)坐標(biāo)是(-4,3),
設(shè)直線OM的解析式是y=kx,把x=-4,y=3代入得3=-4k,
解得k=-
3
4

點(diǎn)P(x,y)即(x,-
3
8
x2-3x-3),精英家教網(wǎng)
作PE⊥MQ于點(diǎn)E.則PE=x+4或-4-x.
∵PQ∥OM,
EQ
PE
=
3
4

PE
PQ
=
4
5

∴d=-
5
4
x-5或d=
5
4
x+5;

(3)如圖P1,Q1時(shí)MP1=OQ1=3,直接得出點(diǎn)的坐標(biāo):
P1(0,-3),Q1(-4,0);
當(dāng)MP2=OQ2=3時(shí),直接得出點(diǎn)的坐標(biāo):P2(0,-3),Q2(-4,6);
∵M(jìn)O=5,
∵根據(jù)點(diǎn)到直線的距離公式得到d=
5
4
x±5,
∴x=-8時(shí),d=5,
∴P點(diǎn)的橫坐標(biāo)為-8,代入二次函數(shù)解析式求出縱坐標(biāo)即可,
∴P(-8,-3),Q(-4,-6);
故答案為:P1(0,-3),Q1(-4,0);P2(0,-3),Q2(-4,6);P(-8,-3),Q(-4,-6).
點(diǎn)評(píng):本題考查了二次函數(shù)頂點(diǎn)坐標(biāo)的求解方法,點(diǎn)到直線的線段的距離公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l1:y=x+1與直線l2:y=-x-
1
2
把平面直角坐標(biāo)系分成四個(gè)部分,則點(diǎn)(-
3
4
,
1
2
)在( 。
A、第一部分B、第二部分
C、第三部分D、第四部分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,直線AB、CD交于O點(diǎn),OE為∠AOC的平分線,∠1=17°,則∠2=
34°
,∠3=
146°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•江漢區(qū)模擬)已知:拋物線F1:y=x2+mx+n的頂點(diǎn)為A(1,0)
(1)求F1的函數(shù)解析式;
(2)如圖,直線y=
1
2
x+b
交x軸于點(diǎn)C,交y軸于點(diǎn)D,在拋物線F1上有一點(diǎn)B,且點(diǎn)B與點(diǎn)A關(guān)于直線y=
1
2
x+b
對(duì)稱(chēng),若拋物線F2的頂點(diǎn)為點(diǎn)B,且經(jīng)過(guò)點(diǎn)A,試求拋物線F2的函數(shù)解析式;
(3)將(2)中求得的拋物線F2向左平移n個(gè)單位得拋物線F3,拋物線F3的頂點(diǎn)為點(diǎn)P,是否存在n使得tan∠BAP=
3
4
?若存在試求n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•無(wú)錫二模)如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
56
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州模擬)如圖,直線a∥b,則∠A的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案