【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線(xiàn)y=kx+b與拋物線(xiàn)y=mx2 x+n同時(shí)經(jīng)過(guò)A(0,3)、B(4,0).

(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過(guò)M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說(shuō)明理由.

【答案】
(1)

解:∵拋物線(xiàn)y=mx2 x+n經(jīng)過(guò)A(0,3)、B(4,0),

,

解得

∴二次函數(shù)的表達(dá)式為y=x2 x+3.


(2)

解:∵直線(xiàn)y=kx+b經(jīng)過(guò)A(0,3)、B(4,0),則 ,

解得

∴經(jīng)過(guò)AB兩點(diǎn)的一次函數(shù)的解析式為y=﹣ x+3.

MN=﹣ x+3﹣(x2 x+3)=﹣x2+4x=﹣(x﹣2)2+4,

∵0≤x≤4,

∴當(dāng)x=2時(shí),MN取得最大值為4.


(3)

解:存在.

①當(dāng)ON⊥AB時(shí),(如圖1)

可證:∠NOQ=∠OAB,∠OQN=∠AOB=90°,

∴△AOB∽△OQN.

= = ,

∴OA=3,OB=4,

∴AB=5,

∵ONAB=OAOB,

∴ON= ,

∴NQ= ,OQ=

∴N( );

②當(dāng)N為AB中點(diǎn)時(shí),(如圖2)

∠NOQ=∠B,∠AOB=∠NQO=90°,

∴△AOB∽∽△NQO.此時(shí)N(2, ).

∴滿(mǎn)足條件的N( )或N(2, ).


【解析】(1)根據(jù)拋物線(xiàn)y=mx2 x+n經(jīng)過(guò)A(0,3)、B(4,0),將兩點(diǎn)坐標(biāo)代入拋物線(xiàn)即可得出m,n的值;(2)根據(jù)待定系數(shù)法可求經(jīng)過(guò)AB兩點(diǎn)的一次函數(shù)的解析式,得到MN=﹣ x+3﹣(x2 x+3)=﹣x2+4x=﹣(x﹣2)2+4,從而求解;(3)分兩種情況討論,①當(dāng)ON⊥AB 時(shí),②當(dāng)N為AB中點(diǎn)時(shí),依次求出點(diǎn)N的坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線(xiàn)的解析式;
(2)若點(diǎn)E為第二象限拋物線(xiàn)上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸上,若線(xiàn)段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線(xiàn)上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】DEF中,DE=DF,點(diǎn)BEF邊上,且∠EBD=60°,C是射線(xiàn)BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線(xiàn)BE上截取BA=BC,連接AC.

(1)當(dāng)點(diǎn)C在線(xiàn)段BD上時(shí),

①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫(xiě)出線(xiàn)段AEBF的數(shù)量關(guān)系為________;

②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;

(2)當(dāng)點(diǎn)C在線(xiàn)段BD的延長(zhǎng)線(xiàn)上時(shí),用等式表示線(xiàn)段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)).

(1)將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△A′BC′,請(qǐng)畫(huà)出△A′BC′,并求BA邊旋轉(zhuǎn)到BA′位置時(shí)所掃過(guò)圖形的面積;
(2)請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出一個(gè)△A″B″C″,使△A″B″C″∽△ABC,且相似比不為1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+ =0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2+2x+ 的圖象向下平移9個(gè)單位,求平移后的圖象的表達(dá)式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),直線(xiàn)y=kx+b(k>0)過(guò)點(diǎn)B,且與拋物線(xiàn)的另一個(gè)交點(diǎn)為C,直線(xiàn)BC上方的拋物線(xiàn)與線(xiàn)段BC組成新的圖象,當(dāng)此新圖象的最小值大于﹣5時(shí),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)A(﹣6,0),點(diǎn)B在原點(diǎn),CA=CB=5,把等腰三角形ABC沿x軸正半軸作無(wú)滑動(dòng)順時(shí)針?lè)D(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y1=﹣ x+1與x軸交于點(diǎn)A,與直線(xiàn)y2=﹣ x交于點(diǎn)B.

(1)求△AOB的面積;
(2)求y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù) y=kx+b 的圖象經(jīng)過(guò)點(diǎn)(﹣1,1)和點(diǎn)(1,﹣5)

(1)求一次函數(shù)的表達(dá)式;

(2)此函數(shù)與 x 軸的交點(diǎn)是 A,與 y 軸的交點(diǎn)是 B,求△AOB 的面積;

(3)求此函數(shù)與直線(xiàn) y=2x+4 的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)E(m,0)(0<m<4),過(guò)點(diǎn)E作x軸的垂線(xiàn)交直線(xiàn)AB于點(diǎn)N,交拋物線(xiàn)于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M.

(1)求a的值和直線(xiàn)AB的函數(shù)表達(dá)式;
(2)設(shè)△PMN的周長(zhǎng)為C1 , △AEN的周長(zhǎng)為C2 , 若 = ,求m的值;
(3)如圖2,在(2)條件下,將線(xiàn)段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接E′A、E′B,求E′A+ E′B的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案