【題目】圖1是一個(gè)八角星形紙板,圖中有八個(gè)直角、八個(gè)相等的鈍角,每條邊都相等,如圖2將紙板沿虛線進(jìn)行切割,無縫隙無重疊的拼成如圖3所示的大正方形,其面積為8+4 ,則圖3中線段AB的長為( )
A.
B.2
C. ﹣1
D. +1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)用t的代數(shù)式表示:AE= ;DF= ;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩種正方形瓷磚鋪設(shè)正方形地面,觀察圖形并猜想填空:當(dāng)黑色瓷磚為28塊時(shí),白色瓷磚塊數(shù)為( 。
A. 27 B. 28 C. 33 D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七班派出名同學(xué)參加數(shù)學(xué)競賽,老師以分為基準(zhǔn),把分?jǐn)?shù)超過分的部分記為正數(shù),不足部分記為負(fù)數(shù).評分記錄如下:,,,,,,,,,,,.
這名同學(xué)中最高分和最低分各是多少?
超過基準(zhǔn)分的和低于基準(zhǔn)分的各有多少人?
這十二名同學(xué)的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=3,D為AB的中點(diǎn),點(diǎn)P是AB上的一個(gè)動(dòng)點(diǎn),PE⊥AC于點(diǎn)E,PF⊥BC于點(diǎn)F.
(1)求證:AE=PE;
(2)求證:DE=DF;
(3)連接EF,EF的最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( )
①a=,b=,c=; ②a=b,∠A=45°; ③a=2,b=2,c=;④∠A=27°,∠B=63°;⑤a=9,b=12,c=15
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)-14-×[2-(-3)]; (2)(-3)-1×-6÷|-|;
(3)2×[5+]-(-|-4|÷);(4)--[-3+(-3)÷(-)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=x2+bx+c經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在x軸下方拋物線上是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E是BC上一點(diǎn),直線AE交BD于點(diǎn)M,交DC的延長線于點(diǎn)F,G是EF的中點(diǎn),連結(jié)CG.求證: ①△ABM≌△CBM;
②CG⊥CM.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com