【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點(diǎn)C,D.
(1)直接寫出一次函數(shù)y=kx+b的表達(dá)式和反比例函數(shù)y=(x>0)的表達(dá)式;
(2)求證:AD=BC.
【答案】(1) y=-x+5,y=;(2)證明見解析.
【解析】試題分析:(1)先確定出反比例函數(shù)的解析式,進(jìn)而求出點(diǎn)B的坐標(biāo),最后用待定系數(shù)法求出直線AB的解析式;
(2)由(1)知,直線AB的解析式,進(jìn)而求出C,D坐標(biāo),構(gòu)造直角三角形,利用勾股定理即可得出結(jié)論.
(1)將點(diǎn)A(2,4)代入中,得,m=2×4=8,∴反比例函數(shù)的解析式為,將點(diǎn)B(a,1)代入中,得,a=8,∴B(8,1),將點(diǎn)A(2,4),B(8,1)代入y=kx+b中,得: ,∴,∴一次函數(shù)解析式為;
(2)∵直線AB的解析式為,∴C(10,0),D(0,5),如圖,過點(diǎn)A作AE⊥y軸于E,過點(diǎn)B作BF⊥x軸于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根據(jù)勾股定理得,AD==,在Rt△BCF中,根據(jù)勾股定理得,BC==,∴AD=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一期間,某公園游戲場(chǎng)舉行“迎奧運(yùn)”活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外其他相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)奧運(yùn)福娃玩具.已知參加這種游戲活動(dòng)為人次,公園游戲場(chǎng)發(fā)放的福娃玩具為個(gè).
求參加一次這種游戲活動(dòng)得到福娃玩具的概率;
請(qǐng)你估計(jì)袋中白球接近多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線,有以下結(jié)論:①;②;③;④.其中正確的結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)D(m,m+8)在第二象限,點(diǎn)B(0,n)在y軸正半軸上,作DA⊥x軸,垂足為A,已知OA比OB的值大2,四邊形AOBD的面積為12.
(1)求m和n的值.
(2)如圖2,C為AO的中點(diǎn),DC與AB相交于點(diǎn)E,AF⊥BD,垂足為F,求證:AF=DE.
(3)如圖3,點(diǎn)G在射線AD上,且GA=GB,H為GB延長(zhǎng)線上一點(diǎn),作∠HAN交y軸于點(diǎn)N,且∠HAN=∠HBO,求NB﹣HB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月12日是第41個(gè)植樹節(jié),某單位積極開展植樹活動(dòng),決定購(gòu)買甲、乙兩種樹苗,用800元購(gòu)買甲種樹苗的棵數(shù)與用680元購(gòu)買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.
(1)求甲種樹苗每棵多少元?
(2)若準(zhǔn)備用3800元購(gòu)買甲、乙兩種樹苗共100棵,則至少要購(gòu)買乙種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;
(1)求拋物線的解析式(用一般式表示);
(2)點(diǎn)D為y軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由;
(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當(dāng)x滿足什么范圍時(shí),直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點(diǎn)C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊分別為a、b、c,則下列條件中不能判定△ABC是直角三角形的是( 。
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2﹣4x+6.
(1)求出函數(shù)的頂點(diǎn)坐標(biāo)、對(duì)稱軸以及描述該函數(shù)的增減性.
(2)求拋物線與x軸交點(diǎn)和y軸交點(diǎn)坐標(biāo);并畫出它的大致圖象.
(3)當(dāng)﹣2<x<4時(shí).求函數(shù)y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com