【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若BE=5,CD=8,求⊙O的半徑.
【答案】(1)直線CD和⊙O的位置關(guān)系是相切,理由見(jiàn)解析;(2)⊙O的半徑為.
【解析】
(1)因?yàn)橹睆剿鶎?duì)的圓周角是90°,所以∠ADB=90°,所以∠DAB+∠DBA=90°,
又因?yàn)?/span>OD=OA,所以得出∠DAB=∠ADO,之后進(jìn)一步求解即可。
(2)根據(jù)CD是⊙O的切線,BE是⊙O的切線,所以得出DE=BE=5,∠CBE=90°=∠CDO,再利用勾股定理求出BC的長(zhǎng),進(jìn)一步證明△COD∽△CEB,之后利用相似三角形性質(zhì)求解即可。
(1)直線CD和⊙O的位置關(guān)系是相切,理由如下:
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDA=∠CBD,
∴∠DAB+∠CDA=90°,
∵OD=OA,
∴∠DAB=∠ADO,
∴∠CDA+∠ADO=90°,
即∠CDO=90°,
∴OD⊥CE,
∴直線CD是⊙O的切線;
(2)∵CD是⊙O的切線,BE是⊙O的切線,
∴DE=BE=5,∠CBE=90°=∠CDO,
∴CE=CD+DE=13,
∴BC==,
∵∠C=∠C,∴△COD∽△CEB,
∴=,即,
解得:OC=,
∴OB=BC﹣OC= ,
即⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+3與兩坐標(biāo)軸圍成一個(gè)△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)1、2、3、、的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點(diǎn)P的橫坐標(biāo),再在剩下的4張卡片中任取一張,將該卡片上的數(shù)作為點(diǎn)P的縱坐標(biāo).
(1)請(qǐng)用樹(shù)狀圖或列表求出點(diǎn)P的坐標(biāo).
(2)求點(diǎn)P落在△AOB內(nèi)部的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過(guò)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)A,在第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)圖象上,過(guò)點(diǎn)B做BC∥x軸,交y軸于點(diǎn)C,且AC=AB,求:
(1)這個(gè)反比例函數(shù)的解析式;
(2)ΔABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.利用一面墻(墻的長(zhǎng)度不限),用20m的籬笆圍成一個(gè)矩形場(chǎng)地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長(zhǎng);
(3)能圍成S=60m2的矩形嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)是 ;
(2)如果拋物線l:y=ax2﹣ax﹣2經(jīng)過(guò)點(diǎn)B,試求拋物線l的解析式;
(3)把△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后,頂點(diǎn)A的對(duì)應(yīng)點(diǎn)A1是否在拋物線l上?為什么?
(4)在x軸上方,拋物線l上是否存在一點(diǎn)P,使由點(diǎn)A,C,B,P構(gòu)成的四邊形為中心對(duì)稱圖形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以1cm/s的速度向點(diǎn)B移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC以2cm/s的速度向點(diǎn)C移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),△DPQ的面積為 cm2;
(2)在運(yùn)動(dòng)過(guò)程中△DPQ的面積能否為26cm2?如果能,求出t的值,若不能,請(qǐng)說(shuō)明理由;
(3)運(yùn)動(dòng)過(guò)程中,當(dāng) A、P、Q、D四點(diǎn)恰好在同一個(gè)圓上時(shí),求t的值;
(4)運(yùn)動(dòng)過(guò)程中,當(dāng)以Q為圓心,QP為半徑的圓,與矩形ABCD的邊共有4個(gè)交點(diǎn)時(shí),直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O,請(qǐng)用無(wú)刻度的直尺完成下列作圖.
(1)如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,且AB=AD,畫(huà)出∠BCD的角平分線;
(2)如圖②,AB和AD是⊙O的切線,切點(diǎn)分別是B、D,點(diǎn)C在⊙O上,畫(huà)出∠BCD的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷售一種成本為40元千克的商品,若按50元千克銷售,一個(gè)月可售出500千克,現(xiàn)打算漲價(jià)銷售,據(jù)市場(chǎng)調(diào)查,漲價(jià)x元時(shí),月銷售量為m千克,m是x的一次函數(shù),部分?jǐn)?shù)據(jù)如下表:
觀察表中數(shù)據(jù),直接寫(xiě)出m與x的函數(shù)關(guān)系式:_______________:當(dāng)漲價(jià)5元時(shí),計(jì)算可得月銷售利潤(rùn)是___________元;
當(dāng)售價(jià)定多少元時(shí),會(huì)獲得月銷售最大利潤(rùn),求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com