【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2+x-3;(2)13.5;(3)存在,P1(-3,-3),P2(,3),P3( ,3).
【解析】
(1)根據(jù)OC=3OB,B(1,0),求出C點(diǎn)坐標(biāo)(0,-3),把點(diǎn)B,C的坐標(biāo)代入y=ax2+2ax+c,求出a點(diǎn)坐標(biāo)即可求出函數(shù)解析式;
(2)過(guò)點(diǎn)D作DE∥y軸分別交線段AC于點(diǎn)E.設(shè)D(m,m2+2m-3),然后求出DE的表達(dá)式,把S四邊形ABCD分解為S△ABC+S△ACD,轉(zhuǎn)化為二次函數(shù)求最值;
(3)①過(guò)點(diǎn)C作CP1∥x軸交拋物線于點(diǎn)P1,過(guò)點(diǎn)P1作P1E1∥AC交x軸于點(diǎn)E1,此時(shí)四邊形ACP1E1為平行四邊形.②平移直線AC交x軸于點(diǎn)E,交x軸上方的拋物線于點(diǎn)P2,P3,由題意可知點(diǎn)P2、P3的縱坐標(biāo)為3,從而可求得其橫坐標(biāo).
(1)∵B的坐標(biāo)為(1,0),
∴OB=1.
∵OC=3OB=3,點(diǎn)C在x軸下方,
∴C(0,-3).
∵將B(1,0),C(0,-3)代入拋物線的解析式得:
,解得:a=,C=-3,
∴拋物線的解析式為y=x-3.
(2)如圖1所示:過(guò)點(diǎn)D作DE∥y,交AC于點(diǎn)E.
∵x=-=-,B(1,0),
∴A(-4,0).
∴AB=5.
∴S△ABC=ABOC=×5×3=7.5.
設(shè)AC的解析式為y=kx+b.
∵將A(-4,0)、C(0,-3)代入得:
,解得:k=-,b=-3,
∴直線AC的解析式為y=-x-3.
設(shè)D(a,a2+a-3),則E(a,-a-3).
∵DE=-(a+2)2+3,
∴當(dāng)a=-2時(shí),DE有最大值,最大值為3.
∴△ADC的最大面積=DEAO=×3×4=6.
∴四邊形ABCD的面積的最大值為13.5.
(3)存在.
①如圖2,過(guò)點(diǎn)C作CP1∥x軸交拋物線于點(diǎn)P1,過(guò)點(diǎn)P1作P1E1∥AC交x軸于點(diǎn)E1,此時(shí)四邊形ACP1E1為平行四邊形.
∵C(0,-3),令x-3=-3,
∴x1=0,x2=-3.
∴P1(-3,-3).
②平移直線AC交x軸于點(diǎn)E2,E3,交x軸上方的拋物線于點(diǎn)P2,P3,當(dāng)AC=P2E2時(shí),四邊形ACE2P2為平行四邊形,當(dāng)AC=P3E3時(shí),四邊形ACE3P3為平行四邊形.
∵C(0,-3),
∴P2,P3的縱坐標(biāo)均為3.
令y=3得:x-3=3,解得;x1=,x2=.
∴P2(,3),P3(,3).
綜上所述,存在3個(gè)點(diǎn)符合題意,坐標(biāo)分別是:P1(-3,-3),P2(,3),P3( ,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷售旺季.某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在矩形 ABCD 中,點(diǎn) E 以 lcm/s 的速度從點(diǎn) A 向點(diǎn) D 運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 t(s),連結(jié) BE,過(guò)點(diǎn) E 作 EF⊥BE,交 CD 于 F,以 EF 為直徑作⊙O.
(1)求證:∠1=∠2;
(2)如圖 2,連結(jié) BF,交⊙O 于點(diǎn) G,并連結(jié) EG.已知 AB=4,AD=6.
①用含 t 的代數(shù)式表示 DF 的長(zhǎng)
②連結(jié) DG,若△EGD 是以 EG 為腰的等腰三角形,求 t 的值;
(3)連結(jié) OC,當(dāng) tan∠BFC=3 時(shí),恰有 OC∥EG,請(qǐng)直接寫出 tan∠ABE 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣(x﹣2)2+b的圖象與x軸分別相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C.
(1)求b的值;
(2)拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),點(diǎn)P(2,m)是線段EF上一動(dòng)點(diǎn),Q(n,0)在x軸上,且n<2,若∠QPC=90°,求n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x>0時(shí),的解集.
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx-4(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(6,b).
(1)b=__________;k=__________.
(2)點(diǎn)C是直線AB上的動(dòng)點(diǎn)(與點(diǎn)A,B不重合),過(guò)點(diǎn)C且平行于y軸的直線l交這個(gè)反比例函數(shù)的圖象于點(diǎn)D,當(dāng)點(diǎn)C的橫坐標(biāo)為3時(shí),得△OCD,現(xiàn)將△OCD沿射線AB方向平移一定的距離(如圖),得到△O′C′D′,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′落在該反比例函數(shù)圖象上,求點(diǎn)O′,D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課堂上,老師給出一道題:如圖,將拋物線C:y=x2﹣6x+5在x軸下方的圖象沿x軸翻折,翻折后得到的圖象與拋物線C在x軸上方的圖象記為G,已知直線l:y=x+m與圖象G有兩個(gè)公共點(diǎn),求m的取值范圍甲同學(xué)的結(jié)果是﹣5<m<﹣1,乙同學(xué)的結(jié)果是m>.下列說(shuō)法正確的是( )
A.甲的結(jié)果正確
B.乙的結(jié)果正確
C.甲、乙的結(jié)果合在一起才正確
D.甲、乙的結(jié)果合在一起也不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是重慶中國(guó)三峽博物館,又名重慶博物館,中央地方共建國(guó)家級(jí)博物館圖(2)是側(cè)面示意圖.某校數(shù)學(xué)興趣小組的同學(xué)要測(cè)量三峽博物館的高GE.如(2),小杰身高為1.6米,小杰在A處測(cè)得博物館樓頂G點(diǎn)的仰角為27°,前進(jìn)12米到達(dá)B處測(cè)得博物館樓頂G點(diǎn)的仰角為39°,斜坡BD的坡i=1:2.4,BD長(zhǎng)度是13米,GE⊥DE,A、B、D、E、G在同一平面內(nèi),則博物館高度GE約為_____米.(結(jié)果精確到1米,參考數(shù)據(jù)tan27°≈0.50,tan39°≈0.80)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司欲招聘一名公務(wù)人員,對(duì)甲、乙兩位應(yīng)試者進(jìn)行了面試和筆試,他們的成績(jī)(百分制)如表所示:
應(yīng)試者 | 面試 | 筆試 |
甲 | 86 | 90 |
乙 | 92 | 83 |
(1)如果公司認(rèn)為面試和筆試同等重要,從他們的成績(jī)看,誰(shuí)將被錄。
(2)如果公司認(rèn)為作為公務(wù)人員面試成績(jī)應(yīng)該比筆試成績(jī)更重要,并分別賦予它們6和4的權(quán),計(jì)算甲、乙兩人各自的平均成績(jī),誰(shuí)將被錄?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com