【題目】解方程:
(1)+3=; (2)=1.
【答案】(1)方程無解 (2)x=0
【解析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
解:(1)+3=,
方程兩邊同乘以(x﹣2),得:
1+3(x﹣2)=x﹣1,
去括號得:1+3x﹣6=x﹣1,
稱項得:3x﹣x=﹣1﹣1+6,
合并同類項得:2x=4,
系數(shù)化為1得:x=2,
經(jīng)檢驗:x=2不是原方程的解,
原方程無解;
(2)=1,
方程兩邊同乘以(x﹣1)(x+1),得:
(x+1)2﹣2=x2﹣1,
去括號得:x2+2x+1﹣2=x2﹣1,
稱項得:2x=﹣1﹣1+2,
合并同類項得:2x=0,
系數(shù)化為1得:x=0,
經(jīng)檢驗:x=0是原方程的解,
∴原方程的解為:x=0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省聊城市第19題)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點C1的坐標(biāo)為(4,0),寫出頂點A1,B1的坐標(biāo);
(2)若△ABC和△A1B2C2關(guān)于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標(biāo);
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A2B3C3,寫出△A2B3C3的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是
A. 直線一定比射線長 B. 角的兩邊越長,角度就越大
C. a一定是正數(shù),-a一定是負(fù)數(shù) D. -1是最大的負(fù)整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
(1)第1個等式:a1=; 第2個等式:a2=;
第3個等式:a3=; 第4個等式:a4=;
…
用含有n的代數(shù)式表示第n個等式:an=___________=___________(n為正整數(shù));
(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , , ,…,按此規(guī)律,這列數(shù)中的第100個數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省荊州市第21題)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達(dá)點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在∠AOB的兩邊上截取AO=BO,CO=DO,連接AD、BC交于點P,則①△AOD≌△BOC;②△APC≌△BPD;③P在∠AOB的平分線上,其中結(jié)論正確的是( 。
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內(nèi)部.小明將BG延長交DC于點F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決:
保持(1)中的條件不變,若DC=2DF,求的值;
(3)類比探求:
保持(1)中條件不變,若DC=nDF,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com