【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OM,OC1

1)求證:AMMD

2)填空:

①若DN,則△ABC的面積為   

②當四邊形COMD為平行四邊形時,∠C的度數(shù)為   

【答案】(1)詳見解析;(2)①;②45°.

【解析】

1)連接OD,根據(jù)切線的性質(zhì)得到∠ODM=ABC=90°,根據(jù)全等三角形的判定定理得到RtBOMRtDOMHL),求得BM=DM,∠DOM=BOM=DOB,根據(jù)圓周角定理得到∠BOM=C,于是得到結(jié)論;
2)①由于tanDON=,求得∠DON=60°,根據(jù)圓周角定理得到,根據(jù)三角形的面積公式即可得到結(jié)論;
②根據(jù)平行四邊形的性質(zhì)和圓周角定理即可得到結(jié)論.

1)證明:連接OD,

DNO的切線,

∴∠ODMABC90°

Rt△BOMRt△DOM中,

∴Rt△BOM≌Rt△DOMHL),

BMDM,DOMBOM,

∵∠C,

∴∠BOMC

OMAC

BOOC,

BMAM

AMDM

2)解:①∵ODOC1,DN,

∴tan∠DON

∴∠DON60°,

∴∠C30°

BC2OC2,

ABBC,

∴△ABC的面積為ABBC2;

當四邊形COMD為平行四邊形時,C的度數(shù)為45°,

理由:四邊形COMD為平行四邊形,

DNBC

∴∠DONNDO90°,

∴∠CDON45°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD內(nèi)接于O,點E上一點(不與A、B重合),點F上一點,連接OE,OF,分別與AB,BC交于點G,B,且∠EOF90°.有下列結(jié)論:;四邊形OGBH的面積隨著點E位置的變化而變化;GBH周長的最小值為2+;BG1,則BG,GE,圍成的面積是,其中正確的是_____.(把所有正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“全國愛眼日”這天,某校課題小組為了了解本校名學生的視力情況,隨機抽查了部分學生的視力,并將調(diào)查的數(shù)據(jù)整理后繪制成如下的頻率分布表和頻數(shù)分布直方圖(均不完整).

組別

視力

頻率

根據(jù)以上信息解答下列問題:

填空:______ _,并將頻數(shù)分布直方圖補充完整;

若將統(tǒng)計結(jié)果繪制成扇形統(tǒng)計圖,則第組所在扇形的圓心角度數(shù)為 ;

課題小組調(diào)查發(fā)現(xiàn),每組中過度使用電子產(chǎn)品而造成視力下降的學生的比重如下表:

視力

比重

根據(jù)調(diào)查結(jié)果估計該校有多少名學生的視力下降是由于過度使用電子產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,AB兩點的縱坐標分別為4,2,反比例函數(shù)yx0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為(  )

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線yax2+bx+ca≠0)的頂點為C(14),交x軸于A、B兩點,交y軸于點D,其中點B的坐標為(3,0)

1)求拋物線的解析式;

2)如圖2,點P為直線BD上方拋物線上一點,若,請求出點P的坐標.

3)如圖3,M為線段AB上的一點,過點MMNBD,交線段AD于點N,連接MD,若DNM∽△BMD,請求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于(  )

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點和點,并經(jīng)過點,拋物線的頂點為.將拋物線平移后得到頂點為且對稱軸為直線的拋物線

1)求拋物線的表達式;

2)在直線上是否存在點,使為等腰三角形?若存在,請求出所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=-1的頂點為A,直線l過點P0,m)且平行于x軸,與拋物線交于點B和點C.若AB=ACBAC=90°,則m=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格中,點A、B均為格點.

()AB的長等于_____

()若點C是以AB為底邊的等腰直角三角形的頂點,點D在邊AC上,且滿足SABD=SABC.請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段BD,并簡要說明點D的位置是如何找到的(不要求證明)______

查看答案和解析>>

同步練習冊答案