【題目】解方程:4(x﹣1)=x(x﹣1)

【答案】解:4(x﹣1)﹣x(x﹣1)=0,
(x﹣1)(4﹣x)=0,
x﹣1=0或4﹣x=0,
所以x1=1,x2=4
【解析】先移項(xiàng)得到4(x﹣1)﹣x(x﹣1)=0,然后利用因式分解法解方程.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用因式分解法的相關(guān)知識(shí)可以得到問題的答案,需要掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在墻壁上固定一根橫放的木條,則至少需要( )枚釘子.
A.1
B.2
C.3
D.隨便多少枚

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(9,a)和點(diǎn)B(b,﹣2)關(guān)于原點(diǎn)對(duì)稱,則ba=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

(3)拓展與應(yīng)用:如圖(3),D,E是D,A,E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D,A,E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一次函數(shù)y=(m-3)x+5的函數(shù)值yx的增大而增大,則(  )

A. m>0 B. m<0 C. m>3 D. m<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問題:

(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?(只填寫結(jié)果)

一個(gè)暖瓶   元;一個(gè)水杯   元.

(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送二個(gè)水杯,單獨(dú)買水杯不優(yōu)惠.若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.

(3)若必須買5個(gè)暖瓶,則當(dāng)買多少個(gè)水杯時(shí)到兩家商城一樣合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于多項(xiàng)式a3ba2+ab1,下列敘述正確的是(  )

A. 它是四次四項(xiàng)式B. 它是三次四項(xiàng)式

C. 它是四次三項(xiàng)式D. 它是三次三項(xiàng)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點(diǎn)Bn與點(diǎn)C重合,無(wú)論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點(diǎn)B與點(diǎn)C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請(qǐng)?zhí)骄俊螧與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為
應(yīng)用提升
(3)小麗找到一個(gè)三角形,三個(gè)角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個(gè)角都是此三角形的好角.
請(qǐng)你完成,如果一個(gè)三角形的最小角是4°,試求出三角形另外兩個(gè)角的度數(shù),使該三角形的三個(gè)角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,點(diǎn)C在∠MON的一邊OM上,過點(diǎn)C的直線ABON,CD平分∠ACM,CECD

(1)若∠O=50°,求∠BCD的度數(shù);

(2)求證:CE平分∠OCA;

(3)當(dāng)∠O為多少度時(shí),CA分∠OCD1:2兩部分,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案