某商場購進(jìn)一批單價為50元的商品,規(guī)定銷售時單價不低于進(jìn)價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式,當(dāng)銷售單價為何值時,所獲利潤最大,最大利潤是多少?

【答案】分析:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,利用圖象經(jīng)過點(60,400)和(70,300),利用待定系數(shù)法求解即可;
(2)用x表示總利潤,得到W=-10x2+1500x-50000,根據(jù)二次函數(shù)最值的求法求當(dāng)銷售單價為70元時,所獲得利潤有最大值為6000元.
解答:解:(1)最高銷售單價為50(1+40%)=70(元),(1分)
根據(jù)題意,設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),(1分)
∵函數(shù)圖象經(jīng)過點(60,400)和(70,300),
,(1分)
解得
∴y與x之間的函數(shù)關(guān)系式為y=-10x+1000,
x的取值范圍是50≤x≤70;(2分)

(2)根據(jù)題意,w=(x-50)(-10x+1000),(1分)
W=-10x2+1500x-50000,w=-10(x-75)2+6250,(1分)
∵a=-10,∴拋物線開口向下,
又∵對稱軸是x=75,自變量x的取值范圍是50≤x≤70,
∴w隨x的增大而增大,(1分)
∴當(dāng)x=70時,w最大值=-10(70-75)2+6250=6000(元),
∴當(dāng)銷售單價為70元時,所獲得利潤有最大值為6000元.(2分)
點評:主要考查利用函數(shù)的模型解決實際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實際意義求解.注意:數(shù)學(xué)應(yīng)用題來源于實踐用于實踐,在當(dāng)今社會市場經(jīng)濟的環(huán)境下,應(yīng)掌握一些有關(guān)商品價格和利潤的知識,總利潤等于總收入減去總成本,然后再利用二次函數(shù)求最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商場購進(jìn)一批單價為16元的日用品,經(jīng)試銷發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件,若按每件25元的價格銷售時,每月能賣210件,假定每月銷售件數(shù)y(件)是價格x(元/件)的一次函數(shù),則y與x之間的關(guān)系式是
,銷售所獲得的利潤為w(元)與價格x(元/件)的關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場購進(jìn)一批單價為16元的日用品,銷售一段時間后,經(jīng)調(diào)查發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件;若按每件25元的價格銷售時,每月能賣210件,若每月銷售件數(shù)y(件)與價格x(元/件)滿足關(guān)系y=kx+b
(1)確定y與x的函數(shù)關(guān)系式,并指出x的取值范圍;
(2)為了使每月獲得利潤為1800元,問商品應(yīng)定為每件多少元?
(3)為了獲得了最大的利潤,商品應(yīng)定為每件多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鞍山)某商場購進(jìn)一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場購進(jìn)一批單價為16元的日用品.若若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?
(3)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場購進(jìn)一批單價為16元的日用品.若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?
(3)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案