已知:如圖,拋物線y=-x2+bx+c經(jīng)過直線y=-x+3與坐標軸的兩個交點A、B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)點M為拋物線上的一個動點,求使得△ABM的面積與△ABD的面積相等的點M的坐標.
(1)直線y=-x+3與坐標軸的兩個交點坐標分別是
A(3,0),B(0,3),
拋物線y=-x2+bx+c經(jīng)過A、B兩點,
c=3
-9+3b+c=0,
得到b=2,c=3,
∴拋物線的解析式y(tǒng)=-x2+2x+3.

(2)①作經(jīng)過點D與直線y=-x+3平行的直線交拋物線于點M.

則S△ABM=S△ABD
直線DM的解析式為y=-x+t.
由拋物線解析式y(tǒng)=-x2+2x+3=-(x-1)2+4,
得D(1,4),
∴t=5.
設(shè)M(m,-m+5),
則有-m+5=-m2+2m+3,
解得m=1(舍去),m=2.
∴M(2,3).
②易求直線DM關(guān)于直線y=-x+3對稱的直線l的解析式為y=-x+1,l交拋物線于M.
設(shè)M(m,-m+1).
由于點M在拋物線y=-x2+2x+3上,
∴-m+1=-m2+2m+3.
解得m=
3+
17
2
,m=
3-
17
2

∴M(
3+
17
2
,-
1+
17
2
)或M(
3-
17
2
,
-1+
17
2

∴使△ABM的面積與△ABD的面積相等的點M的坐標分別是
(2,3),(
3+
17
2
,-
1+
17
2
),(
3-
17
2
,
-1+
17
2
).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標;反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標為t,則S在何范圍內(nèi)時,相應(yīng)的點P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知⊙P的半徑為3,圓心P在拋物線y=
1
2
x2上運動,當⊙P與x軸相切時,圓心P的坐標為( 。
A.(
6
,3)
B.(
3
,3)
C.(
6
,3)或(-
6
,3)
D.(
3
,3)或(-
3
,3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

函數(shù)y=-
3
16
x2+3的圖象與x軸正半軸交于點A,與y軸交于點B,過點A、B分別作y軸、x軸的平行線交直線y=kx于點M、N.
(1)用k表示S△OBN:S△MAO的值.
(2)當S△OBN=
1
4
S△MAO時,求圖象過點M、N、B的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

實踐應(yīng)用:下承式混凝土連續(xù)拱圈梁組合橋,其橋面上有三對拋物線形拱圈.圖(1)是其中一個拱圈的實物照片,據(jù)有關(guān)資料記載此拱圈高AB為10.0m(含拱圈厚度和拉桿長度),橫向分跨CD為40.0m.
(1)試在示意圖(圖(2))中建立適當?shù)闹苯亲鴺讼担蟪龉叭ν庋貟佄锞的解析式;
(2)在橋面M(BC的中點)處裝有一盞路燈(P點),為了保障安全,規(guī)定路燈距拱圈的距離PN不得少于1.1m,試求路燈支柱PM的最低高度.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩個直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點O與E重合.
(1)Rt△AOB固定不動,Rt△CED沿x軸以每秒2個單位長度的速度向右運動,當點E運動到與點B重合時停止,設(shè)運動x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當Rt△CED以(1)中的速度和方向運動,運動時間x=2秒時,Rt△CED運動到如圖二所示的位置,若拋物線y=
1
4
x2+bx+c過點A,G,求拋物線的解析式;
(3)現(xiàn)有一動點P在(2)中的拋物線上運動,試問點P在運動過程中是否存在點P到x軸或y軸的距離為2的情況?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

改革開放后,不少農(nóng)村用上了自動噴灌設(shè)備.如圖所示,AB表示水管,在B處有一個自動旋轉(zhuǎn)的噴水頭,一瞬間噴出的水是拋物線狀,建立如圖所示的直角坐標系后,拋物線的表達式為y=-
1
2
x2+2x+
3
2

(1)當x=1時,噴出的水離地面多高?
(2)你能求出水的落地點距水管底部A的最遠距離嗎?
(3)水管有多高?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C(0,4),頂點為(1,
9
2
).
(1)求拋物線的函數(shù)表達式;
(2)設(shè)拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標;
(3)若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EFAC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案