閱讀下列材料:

如圖1,在梯形ABCD中,AD∥BC,點M、N分別在邊AB、BC上,且MN∥AD,記AD=a,BC=b,若,則有結(jié)論:

請根據(jù)以上結(jié)論,解答下列問題:

如圖2,3,BE、CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1、PP2、PP3,交BC于點P1,交AB于點P2,交AC于點P3。

(1)若點P為線段EF的中點,求證:PP1=PP2+PP3;

(2)若點P在線段EF上任意位置時,試探究PP1、PP2、PP3的數(shù)量關(guān)系,給出證明。

 

【答案】

解:(1)證明:如圖,過點E作ED1⊥BC于D1,ED2⊥AB于D2

∵BE是∠ABC的角平分線,∴ED1= ED2。

∵點P為線段EF的中點,且PP2⊥AB,

∴PP2∥ED2!!,即

同理,過點F作FG1⊥BC于G1,F(xiàn)G2⊥AC于G2,得

在梯形EFG1D1中,∵公式中,m=n,

(梯形中位線定理)。

。

(2)。證明如下:

如圖,過點E作ED1⊥BC于D1,ED2⊥AB于D2,過點F作FG1⊥BC于G1,F(xiàn)G2⊥AC于G2,

設(shè),則梯形EFG1D1滿足公式,

。

公式中,當(dāng)b=0時,原梯形變?yōu)槿切危?/p>

。

,。

將②③代入①,得。

【解析】(1)過點E作ED1⊥BC于D1,ED2⊥AB于D2,過點F作FG1⊥BC于G1,F(xiàn)G2⊥AC于G2,由角平分線上的點到角的兩邊距離相等,可得ED1= ED2,F(xiàn)G1= FG2。在△FED2和△FEG2中應(yīng)用三角形中位線定理,可得,。在梯形EFG1D1中,由公式可證得結(jié)論。

(2)同(1)過點E作ED1⊥BC于D1,ED2⊥AB于D2,過點F作FG1⊥BC于G1,F(xiàn)G2⊥AC于G2,由角平分線上的點到角的兩邊距離相等,可得ED1= ED2,F(xiàn)G1= FG2。在△FED2、△FEG2和梯形EFG1D1中,由公式可求得結(jié)論。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
如圖表示我國農(nóng)村居民的小康生活水平實現(xiàn)程度地處西部某貧困縣,農(nóng)村人口約50萬,2002年農(nóng)村小康生活的綜合實現(xiàn)程度才達到68%,即沒有達到小康程度的人口約為(1-68%)×50萬=16萬.
解答下列問題:
(1)假設(shè)該縣計劃在2002年的基礎(chǔ)上,到2004年底,使沒有達到小康程度的16萬農(nóng)村人口降至10.24萬,那么平均每年降低的百分率是多少?
(2)如果該計劃實現(xiàn),2004年底該縣農(nóng)村小康進程接近圖中哪一年的水平?(假設(shè)該縣人口2年內(nèi)不變)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2外公切線,A、B為切點,
求證:AC⊥BC
證明:過點C作⊙O1和⊙O2的內(nèi)公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.精英家教網(wǎng)
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據(jù)上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個定理的名稱或內(nèi)容;
(2)以AB所在直線為x軸,過點C且垂直于AB的直線為y軸建立直角坐標(biāo)系(如圖2),已知A、B兩點的坐標(biāo)為(-4,0),(1,0),求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的函數(shù)解析式;
(3)根據(jù)(2)中所確定的拋物線,試判斷這條拋物線的頂點是否落在兩圓的連心O1O2上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網(wǎng)
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
精英家教網(wǎng)
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網(wǎng)
如圖4,以點A為中心把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
精英家教網(wǎng)
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關(guān)系.
答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結(jié)論:MN=
bm+an
m+n

請根據(jù)以上結(jié)論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
如圖1,在四邊形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求證:CD=AB.
小剛是這樣思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求證及特殊角度數(shù)可聯(lián)想到構(gòu)造特殊三角形.即過點A作AE⊥AB交BC的延長線于點E,則AB=AE,∠E=∠D.
在△ADC與△CEA中,
∠D=∠E
∠DAC=∠ECA=75°
AC=CA

∴△ADC≌△CEA,
得CD=AE=AB.
請你參考小剛同學(xué)思考問題的方法,解決下面問題:

如圖2,在四邊形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,請問:CD與AB是否相等?若相等,請你給出證明;若不相等,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案