【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.試說(shuō)明△ABC是等腰三角形.
【答案】證明:∵OB=OC,
∴∠OBC=∠OCB,
∵銳角△ABC的兩條高BD、CE相交于點(diǎn)O,
∴∠BEC=∠BDC=90°,
又∵∠BOE=∠COD,
∴∠EBO=∠DCO,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形
【解析】首先可得∠OBC=∠OCB,證明∠EBO=∠DCO,繼而可得∠ABC=∠ACB
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對(duì)角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=BE=2,sin∠ACD= ,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F,,AC=14;
(1)求AB、BC的長(zhǎng);
(2)如果AD=7,CF=14,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合并同類項(xiàng):(1)(7y-3x)-(8y-5x);(2)(12a-7b)-[17a-(3b+5c)]-5c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(m+3,m)在直角坐標(biāo)系的x軸上,則點(diǎn)P的坐標(biāo)為( ).
A. (0,3) B. (-3,0) C. (3,0) D. (0,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.求證:
(1)AM⊥DM;
(2)M為BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列給出的各組線段的長(zhǎng)度中,能組成三角形的是( )
A. 4,5,6B. 6,8,15C. 5,7,12D. 3,7,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把“對(duì)頂角相等”,改寫(xiě)成如果_____________, 那么_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com