【題目】如圖,在正方形ABCD中,AB=2,延長(zhǎng)BC到點(diǎn)E,使CE=1,連接DE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△ABP和△DCE全等時(shí),t的值____.

【答案】37

【解析】

根據(jù)運(yùn)動(dòng)過(guò)程,需要分兩種情況進(jìn)行討論,即BP=t-2=1AP=8-t=1,即可求得.

解:在△ABP與△DCE

AB=CD, ABP=DCE=90°,BP=CE

∴△ABP≌△DCE,

BP=t-2=1,即t=3.

在△ABP與△DCE

AB=DC,∠BAP=DCE=90°,AP=CE

∴△ABP與△DCE,

AP=8-1=1t=7.

所以,當(dāng)?shù)闹禐?/span>37秒時(shí)△ABP和△DCE全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題

(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請(qǐng)用畫樹(shù)狀圖的方式給出分析過(guò)程)

(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是________(請(qǐng)直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2; 其中正確結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,點(diǎn)M(不與AB重合),從點(diǎn)A出發(fā)沿AB方向以cm/s的速度向終點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)MMNAB,交射線BC于點(diǎn)N,以線段MN為直角邊作等腰直角三角形MNQ,且∠MNQ=90°(點(diǎn)B、Q位于MN兩側(cè)).設(shè)△MNQ與△ABC重疊部分圖形面積為S(cm2),點(diǎn)M的運(yùn)動(dòng)時(shí)間為ts).

(1)用含t的代數(shù)式表示線段MN的長(zhǎng),MN=

(2)當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),t=

(3)St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC,過(guò)點(diǎn)C在△ABC外作直線MNAMNN于點(diǎn)M,BNMNN

1)求證:△AMC≌△CNB

2)求證:MNAM+BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn),垂足為

1)求OF的長(zhǎng);

2)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連E,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以的邊為直徑畫圓,與邊交于,與邊交于,已知的面積是面積的中有一個(gè)內(nèi)角度數(shù)是另一內(nèi)角度數(shù)的倍,試計(jì)算三個(gè)內(nèi)角的度數(shù):________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)有、兩種商品,商品每件售價(jià)元,商品每件售價(jià)元,商品每件的成本是元.

根據(jù)市場(chǎng)調(diào)查“若按上述售價(jià)銷售,該商場(chǎng)每天可以銷售商品件,若銷售單價(jià)毎上漲元,商品每天的銷售量就減少件.

請(qǐng)寫出商品每天的銷售利潤(rùn)(元)與銷售單價(jià)元之間的函數(shù)關(guān)系?

當(dāng)銷售單價(jià)為多少元時(shí),商品每天的銷售利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.E、F分別是 BC,CD 上的點(diǎn)。且∠EAF=60° . 探究圖中線段BE,EF,FD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng) FD 到點(diǎn) G,使 DG=BE,連結(jié) AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________;

探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點(diǎn),且∠EAF=BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以55 海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時(shí)的速度前進(jìn)2小時(shí)后, 指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá) E,F ,且兩艦艇之間的夾角為70° ,試求此時(shí)兩艦 艇之間的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案