(2013•甘井子區(qū)一模)一個不透明的袋子中有3個白球、2個黃球和5個紅球,這些球除顏色不同外其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率為
1
5
1
5
分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率,即可求出答案.
解答:解:根據(jù)題意可得:袋子中有3個白球,2個黃球和5個紅球,共10個,
從袋子中隨機摸出一個球,它是黃球的概率2÷10=
1
5

故答案為:
1
5
點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
m
n
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)二模)在函數(shù)y=
2x-3
中,自變量x的取值范圍是
x≥
3
2
x≥
3
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)二模)在?ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖1,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖2,當EF與AB相交時,若∠EAB=α(0°<α<90°),請你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)二模)如圖,在菱形ABCD中,對角線AC,BD相交于點O,E為AB的中點,且OE=a,則菱形ABCD的周長為
8a
8a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)一模)已知關(guān)于x的方程x2+mx-6=0的一個根為2,則m=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•甘井子區(qū)二模)對某種原價為289元的藥品進行連續(xù)兩次降價后為256元,設平均每次降價的百分率為x,則可列方程為
289(1-x)2=256
289(1-x)2=256

查看答案和解析>>

同步練習冊答案