【題目】如圖,點(diǎn)A,B,C,D,E,F(xiàn)是平面上的6個(gè)點(diǎn),則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)是( )
A.180°
B.360°
C.540°
D.720°
【答案】B
【解析】解:∵∠1是△ABG的外角,
∴∠1=∠A+∠B,
∵∠2是△EFH的外角,
∴∠2=∠E+∠F,
∵∠3是△CDI的外角,
∴∠3=∠C+∠D,
∵∠1、∠3、∠3是△GIH的外角,
∴∠1+∠2+∠3=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故選B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用三角形的內(nèi)角和外角,掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)請(qǐng)寫出圖2中陰影部分的面積:;
(2)觀察圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:(m+n)2 , (m﹣n)2 , mn.;
(3)根據(jù)(2)中的等量關(guān)系,解決如下問(wèn)題:若a+b=7,ab=5,求a﹣b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生曉華5次數(shù)學(xué)成績(jī)?yōu)?/span>86,87,89,88,89,則這5個(gè)數(shù)據(jù)的中位數(shù)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,如果兩個(gè)三角形全等,則它們面積相等,而兩個(gè)不全等的三角形,在某些情況下,可通過(guò)證明等底等高來(lái)說(shuō)明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.
(1)如圖1,當(dāng)∠BCE=90°時(shí),求證:S△ACD=S△BCE;
(2)如圖2,當(dāng)0°<∠BCE<90°時(shí),上述結(jié)論是否仍然成立?如果成立,請(qǐng)證明;如果不成立,說(shuō)明理由.
(3)如圖3,在(2)的基礎(chǔ)上,作CF⊥BE,延長(zhǎng)FC交AD于點(diǎn)G,求證:點(diǎn)G為AD中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b都有:a⊕b=a(a+b)+1,其中等式右邊是通常的加法、減法及乘法運(yùn)算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式﹣3⊕x<13的解集為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)月內(nèi),小麗的體重增長(zhǎng)﹣1千克,意思就是這個(gè)月內(nèi)( )
A.小麗的體重減少﹣1千克
B.小麗的體重增長(zhǎng)1千克
C.小麗的體重減少1千克
D.小麗的體重沒(méi)變化
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com