【題目】如圖,為線段上一動點,分別過點,,連接.已知,設.

(1)用含的代數(shù)式表示的值;

(2)探究:當點滿足什么條件時,的值最小?最小值是多少?

(3)根據(jù)(2)中的結論,請構造圖形求代數(shù)式的最小值.

【答案】1;(2三點共線時;(313

【解析】

試題(1)由于△ABC△CDE都是直角三角形,故可由勾股定理表示;

2)若點C不在AE的連線上,根據(jù)三角形中任意兩邊之和大于第三邊知,AC+CEAE,故當A、C、E三點共線時,AC+CE的值最;

3)由(1)(2)的結果可作BD=12,過點BAB⊥BD,過點DED⊥BD,使AB=2ED=3,連接AEBD于點C,則AE的長即為代數(shù)式的最小值,然后構造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性質可求得AE的值.

1;

2)當三點共線時,的值最。

3)如下圖所示,作,過點,過點,使.連結于點的長即為代數(shù)式的最小值.

過點的延長線于點,得矩形,

,12

所以,即的最小值為13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙A切y軸于點B,且點A在反比例函數(shù)y= (x>0)的圖象上,連接OA交⊙A于點C,且點C為OA中點,則圖中陰影部分的面積為(
A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(ij)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A2015=(  )

A. (31,50) B. (32,47) C. (33,46) D. (34,42)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料.

我們知道,1+2+3+…+n=,那么12+22+32+…+n2結果等于多少呢?

在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個圓圈中數(shù)的和為2+2,即22,…;第nn個圓圈中數(shù)的和為n+n+n+…+n,即n2.這樣,該三角形數(shù)陣中共有個圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2

(規(guī)律探究)

將三角形數(shù)陣經兩次旋轉可得如圖2所示的三角形數(shù)陣,觀察這三個三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個位置上三個圓圈中數(shù)的和均為   ,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計算:的結果為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個互異實根.
其中正確結論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)在,蘇寧商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.

(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?

(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺冰箱買下,如果商場還能盈利25%,這臺冰箱的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B表示的數(shù)分別為6,0,-4,動點PA出發(fā),以每秒6個單位的速度沿數(shù)軸向左勻速運動.

1)當點P到點A的距離與點P到點B的距離相等時,點P在數(shù)軸上表示的數(shù)是

2)另一動點RB出發(fā),以每秒4個單位的速度沿數(shù)軸向左勻速運動,若點P、R同時出發(fā),問點P運動多少時間追上點R?

3)若MAP的中點,NPB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不變,請你畫出圖形,并求出線段MN的長度.

查看答案和解析>>

同步練習冊答案