【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交DE的延長(zhǎng)線于F點(diǎn),連接AD、CF.

(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCF是菱形?為什么?

【答案】
(1)證明:∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn),

∴DE∥AB,

∵AF∥BC,

∴四邊形ABDF是平行四邊形,

∴AF=BD,則AF=DC,

∵AF∥BC,

∴四邊形ADCF是平行四邊形


(2)證明:當(dāng)△ABC是直角三角形時(shí),四邊形ADCF是菱形,

理由:∵點(diǎn)D是邊BC的中點(diǎn),△ABC是直角三角形,

∴AD=DC,

∴平行四邊形ADCF是菱形


【解析】(1)首先利用平行四邊形的判定方法得出四邊形ABDF是平行四邊形,進(jìn)而得出AF=DC,利用一組對(duì)邊相等且平行的四邊形是平行四邊形,進(jìn)而得出答案;(2)利用直角三角形的性質(zhì)結(jié)合菱形的判定方法得出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的判定和菱形的判定方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)教研部門(mén)對(duì)本區(qū)初二年級(jí)的學(xué)生進(jìn)行了一次隨機(jī)抽樣問(wèn)卷調(diào)查,其中有這樣一個(gè)問(wèn)題:
老師在課堂上放手讓學(xué)生提問(wèn)和表達(dá)
A.從不 B.很少 C.有時(shí) D.常常 E.總是
答題的學(xué)生在這五個(gè)選項(xiàng)中只能選擇一項(xiàng).如圖是根據(jù)學(xué)生對(duì)該問(wèn)題的答卷情況繪制的兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問(wèn)題:
(1)該區(qū)共有 名初二年級(jí)的學(xué)生參加了本次問(wèn)卷調(diào)查;
(3)在扇形統(tǒng)計(jì)圖中,“總是”所占的百分比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)|+16|+|-24|-|-30|;

(2)|+3|×|-6|+|-32|÷|-8|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)yax2+bx+ca≠0)中的xy滿足下表:

x

0

1

2

3

4

5

y

3

0

1

0

m

8

當(dāng)0x3時(shí),則y的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把方程2x2﹣1=5x化為一般形式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x=﹣1是一元二次方程x2+2x+a=0的一個(gè)根,那么a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)八年級(jí)(8)班同學(xué)全部參加課外活動(dòng)情況統(tǒng)計(jì)如圖:

(1)請(qǐng)你根據(jù)以上統(tǒng)計(jì)中的信息,填寫(xiě)下表:

該班人數(shù)

這五個(gè)活動(dòng)項(xiàng)目人數(shù)的中位數(shù)

這五個(gè)活動(dòng)項(xiàng)目人數(shù)的平均數(shù)


(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該學(xué)校八年級(jí)共有600名學(xué)生,根據(jù)統(tǒng)計(jì)圖結(jié)果估計(jì)八年級(jí)參加排球活動(dòng)項(xiàng)目的學(xué)生共有名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,對(duì)角線AC,BD交于點(diǎn)OAC=8,BD=12,AD的取值范圍是___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.

(1)由圖觀察易知點(diǎn)A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明點(diǎn)B(5,3),C(﹣2,﹣5)關(guān)于直線l的對(duì)稱點(diǎn)B′,C′的位置,并寫(xiě)出它們的坐標(biāo):B′、C′;
(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(a,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P′坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案