【題目】如圖7,在四邊形ABCD中,AB=BC,∠ABC=60°,E是CD邊上一點,連接BE,以BE為一邊作等邊三角形BEF.請用直尺在圖中連接一條線段,使圖中存在經(jīng)過旋轉(zhuǎn)可完全重合的兩個三角形,并說明這兩個三角形經(jīng)過什么樣的旋轉(zhuǎn)可重合.
【答案】見解析,將△CBE繞點B逆時針旋轉(zhuǎn)60°,可與△ABF重合.
【解析】
根據(jù)△BEF是等邊三角形,可得∠EBF=60°=∠CBA,EB=FB,進而得出∠CBE=∠ABF,再根據(jù)AB=BC,即可得到△BCE≌△BAF,進而得出將△CBE繞點B逆時針旋轉(zhuǎn)60°,可與△ABF重合.
如圖,連接AF.
將△CBE繞點B逆時針旋轉(zhuǎn)60°,可與△ABF重合.
理由:
∵△BEF是等邊三角形,
∴∠EBF=60°=∠CBA,EB=FB,
∴∠CBE=∠ABF,
又∵AB=BC,
∴△BCE≌△BAF,
∴將△CBE繞點B逆時針旋轉(zhuǎn)60°,可與△ABF重合.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,點P從點B出發(fā),沿BC以2 cm/s的速度向點C移動,點Q從點C出發(fā),以1 cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當(dāng)t=__________時,△CPQ與△CBA相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=90°,AB=1,tanA=,過AB邊上一點P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,則EF的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶需求生產(chǎn)一種產(chǎn)品,成本每件20萬元,規(guī)定每件售價不低于成本,且不高于40萬元。經(jīng)市場調(diào)查,每年的銷售量y(件)與每件售價x(萬元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(萬元/件) | 25 | 30 | 35 |
銷售量y(件) | 50 | 40 | 30 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每年的總利潤為W(萬元),求W與x之間的函數(shù)表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少萬元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以的邊為直徑作,點C在上,是的弦,,過點C作于點F,交于點G,過C作交的延長線于點E.
(1)求證:是的切線;
(2)求證:;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的表達式;
(2)當(dāng)x>0時,比較kx+b與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AC:y=﹣3x+3與直線AB:y=ax+b交于點A,且B(﹣9,0).
(1)若F是第二象限位于直線AB上方的一點,過F作FE⊥AB于E,過F作FD∥y軸交直線AB于D,D為AB中點,其中△DFF的周長是12+4,若M為線段AC上一動點,連接EM,求EM+MC的最小值,此時y軸上有一個動點G,當(dāng)|BG﹣MG|最大時,求G點坐標(biāo);
(2)在(1)的情況下,將△AOC繞O點順時針旋轉(zhuǎn)60°后得到△A′OC',如圖2,將線段OA′沿著x軸平移,記平移過程中的線段OA′為O′A″,在平面直角坐標(biāo)系中是否存在點P,使得以點O′,A″,E,P為頂點的四邊形為菱形,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮、小芳和兩個陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個陌生人到1至4 層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)請你用畫樹狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com