【題目】當m,n是實數且滿足m﹣n=mn時,就稱點Q(m, )為“奇異點”,已知點A、點B是“奇異點”且都在反比例函數y= 的圖象上,點O是平面直角坐標系原點,則△OAB的面積為( )
A.1
B.
C.2
D.
【答案】B
【解析】解:設A(a, ), ∵點A是“奇異點”,
∴a﹣b=ab,
∵a =2,則b= ,
∴a﹣ =a3 ,
而a≠0,整理得a2+a﹣2=0,解得a1=﹣2,a2=1,
當a=﹣2時,b=2;當a=1時,b= ,
∴A(﹣2,﹣1),B(1,2),
設直線AB的解析式為y=mx+n,
把A(﹣2,﹣1),B(1,2)代入得 ,解得 ,
∴直線AB與y軸的交點坐標為(0,1),
∴△OAB的面積= ×1×(2+1)= .
故選B.
設A(a, ),利用新定義得到a﹣b=ab,再利用反比例函數圖象上點的坐標特征得到a =2,a﹣ =a3 , 則可解得a和b的值,所以A(﹣2,﹣1),B(1,2),接著利用待定系數法求出直線AB的解析式.從而得到直線AB與y軸的交點坐標,然后根據三角形面積公式計算△OAB的面積.
科目:初中數學 來源: 題型:
【題目】6月5日是“世界環(huán)境日”,某校從3名男生和2名女生中隨機抽取學生去參加市中學生環(huán)保演講比賽.
(1)若抽取1名學生參加,恰好是男生的概率是;
(2)如果抽取1名學生參加,請用列表或樹狀圖求出恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)(-6)-(-9); (2)1.8-(-2.6);
(3); (4)8-(9-10);
(5)(-61)-(-71)-(-8)-(-2); (6)-3.7-(-)-1.3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,為更好地決策,自來水公司隨機抽取了部分用戶的用水量數據,并繪制了如圖不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:
(1)此次抽樣調查的樣本容量是_____;
(2)補全頻數分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角度數;
(3)用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀圖1的情景對話,然后解答問題:
(1)根據“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是命題(填“真”或“假”)
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖2,AB是⊙O的直徑,C是⊙O上一點(不與點A、B重合),D是半圓 的中點,C、D在直徑AB的兩側,若在⊙O內存在點E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
②當△ACE是直角三角形時,求∠AOC的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com